THE OPEN UNIVERSITY OF SRI LANKA
B.Sc DEGREE PROGRAMME: LEVEL 04
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
FINAL EXAMINATION - 2013/2014

CSU2279: DATA STRUCTURES AND ALGORITHMS

DURATION: THREE HOURS (3 HOURS)

Date: 22nd November, 2014

Time: 1.30 p.m - 4.30 p.m

Answer FOUR Questions ONLY.

Q1.

- a) What is an Algorithm?
- b) What are the **five (05)** main steps involved when writing a computer program to solve a given problem?
- c) "Problem identification is the most difficult and the most important step of the above five (05) main steps"

Do you agree with this statement? Give reasons briefly.

- d) What are the aspects you should consider when selecting an algorithm for implementation?
- e) Consider the following segment of instructions. Is it an Algorithm? Justify your answer.

N=1 Print n N=N+1 GO TO STEP 2

f) Explain the factors on which the running time of a program depends on.

Q2.

- a) What are the main differences between the internal and external sorting methods?
- b) Compare and contrast the Bubble sort algorithm with the Insertion sort algorithm.
- c) Write a Pascal program to implement the *insertion sorting* algorithm.
- d) Explain how your program works on the following set of data.

44, 55, 12, 42, 94, 18, 06, 67, 48, 40

- a) What is a *data structure*?
- b) Write three (03) main differences between the array based and pointer based implementations of a list.
- c) Write three (03) main differences between singly-linked lists and doubly-linked lists?
- d) Explain the process of the following question (i) and (ii) by means of appropriate diagrams. (Show the pointer manipulations clearly)
 - i. Deleting an element from the singly linked list
 - ii. Inserting an element into the singly linked list.
- e) State whether the following statements are *true* or *false*, if it is *false* give the reason.
 - i. A pointer is a *cell* whose value indicates another cell.
 - ii. In singly linked list data structures a cell has two components; they are *value of the cell* and the pointer *value which refers to the previous cell*.
 - iii. In the pointer representation of a data structure, the *header* cell has the *address of the first cell*.
 - iv. Singly linked lists can transverse both forward and backward.
 - v. A doubly linked list uses more memory per node than a Singly linked list.

Q4.

- a) State why a stack is called "a push down List"?
- b) How does LIFO data structure differ from a FIFO data structure?
- c) A stack has two basic operations called PUSH(X,S) and POP(S),

Figure 1: Current state of the stack

Figure 1 shows the current state of the stack. **Graphically show** the following operations that can be performed on the above Stack. Indicate the *top* pointer in each state of the stack.

```
PUSH(6, S)
```

PUSH(7, S)

POP(S),

PUSH(8, S)

POP(S),

POP(S),

d) Write a Pascal function/procedure to perform the PUSH and POP operations.

Q5.

- a. Define the following String operations.
 - i. POS(S1, S2)
 - ii. COPY(S1, p, 1, S2)
 - iii. LENGTH(S1)
 - iv. CONCAT(S1, S2, S3)
- b. What is a **Set?** What do set *union*, *difference* and *intersection* mean?
- c. Write Pascal procedures/functions to implement the following Set operations.
 - i. INISET(S): A procedure to initialize the set S.
 - ii. UNIONSETS (S1, S2): A procedure to create the union of the two sets, S1 and S2.
 - iii. INTERSECTS (S1, S2): A procedure to create the intersection of the two sets, S1 and S2.

Q6.

- a. Using an appropriate diagram, explain the following terms.
 - i. Binary tree
 - ii. Leaf nodes
 - iii. Depth of a binary tree
 - iv. Level of a binary tree
 - v. Sub tree
 - vi. Ancestors
 - vii. Siblings

b. Answer the following questions using the following tree structure B1 (figure 2).

Figure 2: B1 tree

- i. Give the preorder, inorder, postorder transversal of the tree B1.
- ii. Is B1 a binary tree? Justify your answer.
- iii. Show B1 after inserting the 9th node. Explain the concept that you used when inserting the 9th node. (Call the resultant tree B2)
- iv. Explain what should be done more carefully insertion or deletion? Justify your answer.
- v. Is B2 a strictly binary tree structure? Justify your answer.

*** All Rights Reserved ***