The Open University of Sri Lanka B.Sc. /B.Ed. Degree Programme Final Examination - 2013/2014 Pure Mathematics - Level 04 PUU2144/PUE4144 - Group Theory I

Duration: Two Hours

Date: 22.12.2014 Time: 9.30 a.m. - 11.30 a.m.

Answer Four Questions Only.

1. (a) Let G be a set of mappings where

$$G = \{ f_{ab} \mid \text{for given } a, b \in \mathbb{R}, a \neq 0, f_{ab} : \mathbb{R} \to \mathbb{R} \text{ with } f_{ab}(x) = ax + b, x \in \mathbb{R} \}.$$

Let a binary operation * on G be defined by

$$f_{ab} * f_{cd} = (ax+b)*(cx+d) = a(cx+d)+b$$
 for all $f_{ab}, f_{cd} \in G$.

Show that (G,*) is a group.

- (b) If $a^2 = e$ for each element a of a group G, where e is the identity element of G, show that G is commutative.
- 2. (a) Let G be a group. Let H and K be subgroups of G.
 - (i) Prove that $H \cap K$ is a subgroup of G.
 - (ii) If |H| and |K| are relatively prime integers, show that $H \cap K = \{e\}$.
 - (b) Let the set $\xi(G) = \{a \in G \mid ga = ag \ \forall g \in G\}$ be a subset of any given group G. Show that $\xi(G)$ is a subgroup of G.
- 3. (a) Define a normal subgroup of a group G.

Establish the equivalence of the following statements for a subgroup

H of a given group G.

- (i) H is a normal subgroup of G,
- (ii) $gHg^{-1} = H$ for each $g \in G$,
- (iii) $gHg^{-1} \subseteq H$ for each $g \in G$,
- (iv) $ghg^{-1} \in H$ for each $g \in G$ and $h \in H$.
- (b) Show that if A is a subgroup of G and B is a normal subgroup of G then AB is a normal subgroup of G, where $AB = \{x \mid x = ab, a \in A, b \in B\}$

- 4. (a) (i) Prove that any cyclic group of order n has a unique subgroup of order m for each m that divides n.
 - (ii) Find all subgroups of \mathbb{Z}_{18} .
 - (iii) Determine the subgroup lattice for \mathbb{Z}_{18} .
 - (b) Let G be the cyclic group of order 4 generated by a. Let $H = \langle a^2 \rangle$.
 - (i) Find all right cosets of H in G.
 - (ii) Prove that the union of these cosets is G.
- 5. (a) Let (G, *) and (G, *) be two groups. If $\phi: G \to G'$ is a one to one and onto homomorphism, then prove each of the following:
 - (i) G is commutative if and only if G' is commutative.
 - (ii) An element e of G is an identity element if and only if $\phi(e)$ is an identity element of G'.
 - (iii) Let $x \in G$. An element y of G is an inverse of x in G if and only if $\phi(y)$ is an inverse of $\phi(x)$ in G'.
 - (b) Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | ad bc \neq 0, \ a, b, c, d \in \mathbb{R} \right\}$ with operation matrix multiplication.

Let $\varphi: G \to \mathbb{R}^*$, the non zero real numbers, be defined by $\varphi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$.

Prove that φ is a homomorphism from G onto the multiplicative group of nonzero real numbers, \mathbb{R}^* .

6. (a) State Fundamental Homomorphism Theorem.

Let N be a normal subgroup of G and let H be a subgroup of G. Suppose that HN is a subgroup of G. Define the map ϕ by $\phi: H \to HN/N$.

- (i) Prove that N is a normal subgroup of HN.
- (ii) Show that ϕ is well defined.
- (iii) Prove that ϕ is an onto homomorphism.
- (iv) Deduce that $H/H \cap N \cong HN/N$.