The Open University of Sri Lanka
B.Sc. Degree Programme –Level 05
Department of Mathematics and Computer Science
Final Examination -2013/2014

CSU3275/PMU3293/PME5293: Automata Theory

Duration Three hours

Date: 28th November 2014

Time: 1.30pm-4.30pm

Answer Four Questions only

- 01.(a) Let Σ be an alphabet (that is, a finite set of symbols) and $a \in \Sigma$ Explain the meaning of a^* and Σ^* .
 - (b) State whether each of the followings is true or false.
 - (i) $abb \in b^*a^*b^*a^*$
 - (ii) $abcd \in (a(cd)*b)*$
 - (iii) $101 \in ((00)*1*(10)*(11)*(01)*)*$
 - (c) Check whether the languages represented by the following expressions are identical or not. Justify your answer.
 - (i) $(0*\cup 1*)$ and $(0\cup 1)*$
 - (ii) $(0*\cup 1*)*$ and $(0\cup 1)*$
 - 02. (i) Define a Deterministic finite automation (DFA).
 - (ii) Define the language accepted by a DFA.
 - (iii) Draw the directed graph that describes the DFA with the following state transition table.

States	Inputs	
	a	b
A	В	D
В	С	: D
С	С	С
D	В	D

Initial state: A

Accepting state: D

(iv) Which of the following strings are accepted by the DFA given above?

- (a) aabb
- (b) abb
- (c) bbab
- (d) bbaabaa

- 03. I (a) Define Mealy type sequential machine.
 - (b) Define Moor type sequential machine.
 - (c) Compare Mealy type sequential machines and Moor type sequential machines.

II. Consider the flow table given below.

State	Inputs		Outputs
	0	1	·
0	0	2	0
1	0	2	1
2	1	3	0
3	1	3	1

- (a) What is the type of this machine?
- (b) Draw the state graph for this machine.
- III. Draw a DFA to accept strings of 0's and 1's ending with the string 011.
- 04. (a) Define the following terms.

If A be a nonempty set. Then a binary relation R in A is said be a

- (i) Partial order
- (ii)Total Order
- (iii)Equivalence Relation
- (iv)Equivalence Classes
 - (b) (i) What do you mean by a Hasse Diagram
 - (ii) Draw a Hasse Diagram for the poset ($\{1,2,3,4,5,6\}$)
- 05. (i) What do you mean by finite automata?
 - (ii) What are the special characteristics of Non -Deterministic Finite Automata?
 - (iii) Describe the difference between NDFA and DFA.
 - (iv) Construct a DFA that accepts strings over the alphabet {0,1} that have at least one (1) and an even number of 0s after the last1.

- 06. (i) Define a SP-Partition.
 - (ii) State the parallel Decomposition theorem.
 - (iii) Identify 3 SP-Partitions from the table given below with proper justification.

State transition

 (σ)

S/I	0	1
1	2	3
2	1	3
3	4	5
4	3	2
5	1	6
6	1	5

All Rights Reserved