The Open University of Sri Lanka

B.Sc./ B.Ed. Degree Programme

Level-05 Final Examination-2013/2014

PUU3244/PUE5244 - Number Theory & Polynomials

Pure Mathematics

Duration: Three Hours.

Date: 04.12.2014

Time: 1.30 p.m. - 4.30 p.m.

Answer FIVE questions only.

(State clearly any results that you used to workout the Question 1 to Question 4, without proof.)

- 1. (i) Define the set \mathbb{N} of natural numbers.
 - (ii) If $m, n \in \mathbb{N}$ then prove that $m + n \in \mathbb{N}$.
 - (iii) If $x, y \in \mathbb{R}$ and $m, n \in \mathbb{N}$ prove that
 - (a) $x^m . x^n = x^{m+n}$
 - (b) $(x^m)^n = x^{mn}$
 - (c) $(xy)^n = x^n y^n$
 - (iv) Using mathematical induction, prove that

$$1.5+2.5^2+3.5^3+...n.5^n = {(4n-1)5^{n+1}+5}/16$$
 for all positive integers n .

- 2. (i) Define a prime number.
 - (ii) If $x, y \in \mathbb{Z}$ and $3|(x^2 + y^2)$ then prove that 3|x| and 3|y|, where \mathbb{Z} denotes the set of all integers.
 - (iii) If S is a non-empty subset of \mathbb{Z} such that
 - (a) $s_1, s_2 \in S \Rightarrow s_1 + s_2 \in S$. (closed under addition) and
 - (b) $s_1, s_2 \in S \Rightarrow s_1 s_2 \in S$. (closed under subtraction),

then prove that S=0 or S contains a least positive integer d such that $S = \{nd : n \in \mathbb{Z}\}.$

(iv) If S is a subset of \mathbb{Z} such that S is closed under subtraction then prove that S is closed under addition.

- 3. (i) Define each of the following for positive integers:
 - (a) Greatest Common Divisor.
 - (b) Least Common Multiple.
 - (c) Pairwise relatively prime.
 - (ii) If $a, b \in \mathbb{Z}$ (with at least one of them non-zero) then prove that a and b have a unique greatest common divisor d which can be expressed in the form d = am + bn with $m, n \in \mathbb{Z}$.
 - (iii) Find the greatest common devisor of 4203 and 207. Express it in the form 4203m + 207n with suitable integers m and n. Find the least common multiple of 4081 and 319.
 - 4. (i) Show that for a given integer $n \in \mathbb{Z}$ there exist a unique $r \in \mathbb{Z}_m$ such that $n \equiv r \pmod{m}$ where $\mathbb{Z}_m = \{r \in \mathbb{Z} : 0 \le r < m\}$.
 - (ii) Let $n \in \mathbb{N}$ and p is a prime number. Prove that $n^p \equiv n \pmod{p}$.
 - (iii) If $n \in \mathbb{N}$ prove that (a) $10^n \equiv 1 \pmod{9}$. (b) $6^n \equiv 6 \pmod{10}$.
 - (iv) Prove that $2^{10} \equiv 1 \pmod{31}$ and deduce that $2^{340} \equiv 1 \pmod{31}$.
- 5. (i) Let R be a commutative ring. If $f, g \in R[x]$ and g is monic then prove that there exists unique $q, r \in R[x]$ such that f = qg + r with r = 0 or $\deg(r) < \deg(g)$.
 - (ii) Find the greatest common divisor of $f(x) = x^4 + 4x^3 + 3x^2 + x + 1$ and $g(x) = 2x^3 + x^2 x 3$ in $\mathbb{Z}_5[x]$ and express it in the form d(x) = f(x)u(x) + g(x)v(x) where d(x) = (f(x), g(x)) and u(x), v(x) are functions in $\mathbb{Z}_5[x]$.
- 6. (i) State and prove Eisentein's irreducibility criteria.
 - (ii) Determine whether the polynomial $25x^5 9x^4 3x^2 12$ in $\mathbb{Z}[x]$ is irreducible over $\mathbb{Q}[x]$.
 - (iii) Express $f(x) = 2x^3 + 3x^2 7x 5$ as a product of a unit and monic irreducible polynomials in $\mathbb{Z}_{11}[x]$.

- 7. (i) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ and $n \ge 1$. If $\alpha \in \mathbb{Q}$ is a zero of f(x) and $\alpha = \frac{r}{s}$ with (r, s) = 1, then prove that $r \mid a_0$ and $s \mid a_n$.
 - (ii) Find all rational roots of the polynomial $64x^4 64x^3 4x^2 + 16x 3$ over \mathbb{Q} .
- 8. (i) Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{C}[x]$, $a_n \neq 0$ and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the zeros of f(x) in \mathbb{C} .

Show that

(a)
$$a_n S_m + a_{n-1} S_{m-1} + \dots + a_0 S_{m-n} = 0$$
 if $m > n$,

(b)
$$a_n S_m + a_{n-1} S_{m-1} + \dots + a_{n-m+1} S_1 + m a_{n-m} = 0$$
 if $m \le n$,
where $S_m = \sum_{i=0}^n \alpha_i^m$.

(ii) If $a, b, c \in \mathbb{C}$ such that a+b+c=0, then prove that, $4(a^7+b^7+c^7) = 7abc(a^2+b^2+c^2)^2$.