The Open University of Sri Lanka B.Sc. / B.Ed. Degree Programme Pure Mathematics – Level 05 Final Examination - 2013/2014

PUU3240/PUE5240 - Ring Theory & Field Theory

Duration: Three Hours

Date: 12.11.2014

Time: 09.30a.m. - 12.30p.m.

Answer Five Questions Only.

1. (a) Let $(R; +, \cdot)$ be a ring and let $R \times \mathbb{Z}$ be a ring defined on binary operations \oplus and Θ as follows:

$$(a,m) \oplus (b,n) = (a+b,m+n)$$
$$(a,m) \ominus (b,n) = (ab+mb+na,mn)$$

for $(a, m), (b, n) \in \mathbb{R} \times \mathbb{Z}$.

- (i) Find the additive identity and the additive inverse of $R \times \mathbb{Z}$.
- (ii) Find the unity element of $R \times \mathbb{Z}$ if exists.
- (iii) Prove that multiplication is associative on $R \times \mathbb{Z}$.
- (b) Show that any ring R is commutative if it satisfies any one of the following conditions:
 - (i) $(a+b)^2 = a^2 + 2ab + b^2$ for $a, b \in R$.
 - (ii) R is a ring with unity and $(ab)^2 = a^2b^2$ for $a, b \in R$.
- 2. (a) Prove that the zero divisors of \mathbb{Z}_n are precisely the non zero elements of \mathbb{Z}_n which are not invertible.
 - (b) Show that $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain.
- 3. (a) Prove that a commutative ring R with unity is a field if it has no proper ideals.
 - (b) Consider the subset $I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} | a, b \in \mathbb{Z} \right\}$ of the ring $(M_2(\mathbb{Z}); +, \cdot)$.
 - (i) Show that I is a subring of $M_2(\mathbb{Z})$.
 - (ii) Is I an ideal of $M_2(\mathbb{Z})$? justify your answer.

- 4. (a) (i) Let R and S be rings and let $\varphi: R \to S$ be a ring homomorphism. Suppose that e is an idempotent of R. prove that $\varphi(e)$ is an idempotent of S.
 - (ii) Suppose that s is any idempotent in S. define a map $\phi : \mathbb{Z} \to S$ by $\phi(n) = ns$ for all $n \in \mathbb{Z}$.

Show that ϕ is a ring homomorphism.

- (b) Show that if ψ is a homomorphism defined on a ring R, then the set $\{a \in R \mid \psi(a) = a\}$ is a subring of R.
- 5. (a) State the Fundamental Homomorphism Theorem. Let I and J be ideals of the ring R.
 - (i) Show that the mapping $\varphi: I \to \binom{I+J}{J}$ is an onto homomorphism.
 - (ii) Deduce that $I/(I \cap J) \cong {(I+J)/J}$.
 - (b) Prove that every homomorphic image of a nil ring is nil.
- 6. (a) Prove that a commutative ring with an identity is a field if and only if it has no non trivial ideals.
 - (b) Let f be a homomorphism from field F into a field F'. Show that f is the trivial homomorphism or else f is one to one.
- 7. (a) Let f be a homomorphism from the ring R into the ring R'. In addition, R and R' are both rings with unity and f(R) = R'. Prove each of the following:
 - (i) f(-a) = -f(a) for all $a \in R$.
 - (ii) $f(1_R) = 1_{R'}$, where 1_R and $1_{R'}$ are identity elements of R and R'.
 - (iii) $f(a^{-1}) = [f(a)]^{-1}$ for each invertible element $a \in R$.
 - (b) For homomorphisms $\phi: (R; +, \cdot) \to (R'; \oplus, \Theta)$ and $\psi: (R'; \oplus, \Theta) \to (R''; \oplus', \Theta')$, show that their composition $\psi \circ \phi: (R; +, \cdot) \to (R''; \oplus', \Theta')$ is also a homomorphism.
- 8. Define the terms $prime\ ideal$ and $maximal\ ideal$ in a commutative ring R with unity.
 - (a) Let I be a proper ideal of the ring R. Prove that I is a prime ideal if and only if the quotient ring R/I is an integral domain.
 - (b) Let R be a Boolean ring. Prove that non trivial ideal I of R is prime if and only if it is a maximal ideal.