THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. /B.Ed. Degree Programme

APPLIED MATHEMATICS-LEVEL 05

AMU3186/AME5186- Quantum Mechanics

FINAL EXAMINATION- 2013/2014

Duration: Two Hours.

Date: 02.12.2014

Time: 1.30 p.m. to 3.30 p.m.

Answer FOUR Questions only.

- (1) An X-ray photon of wave length $\lambda = 10^{-10} \, m$ is incident on a stationary electron, where $\lambda_{\rm B} = \frac{\hbar}{mc}$ is the Compton wave length, m being the mass of the electron and c, the speed of light.
 - (i) Show that for Compton scattering the wavelength shift

 $\delta\lambda = \lambda' - \lambda = 2\lambda_C \sin^2\frac{\theta}{2}$, where λ is the wave length of the incident X-ray and λ' is the wave length of X-ray scattered through an angle θ .

- (ii) Calculate the Compton shift.
- (iii) Calculate the kinetic energy of the recoiling electron, if

$$m = 9.108 \times 10^{-31} \ kg$$
, $c = 3 \times 10^{8} \ ms^{-1}$, $h = 6.625 \times 10^{-34} \ Js$ and $\theta = 30^{\circ}$.

- (2) (i) Define the commutator, usually denoted by [A, B], of two operators \hat{A} and \hat{B} .
 - (ii) If \hat{A} , \hat{B} , \hat{C} and \hat{D} are operators, show that

(a)
$$\left[\hat{A}, \hat{B}\right] = -\left[\hat{B}, \hat{A}\right]$$

(b)
$$\left[\hat{A},\hat{B}\;\hat{C}\right] = \left[\hat{A},\hat{B}\right]\hat{C} + \hat{B}\left[\hat{A},\hat{C}\right]$$

(c)
$$\left[\hat{A}, \hat{B} + \hat{C} + \hat{D}\right] = \left[\hat{A}, \hat{B}\right] + \left[\hat{A}, \hat{C}\right] + \left[\hat{A}, \hat{D}\right]$$

(d)
$$\left[\hat{A} + \hat{B}, \hat{C} + \hat{D}\right] = \left[\hat{A}, \hat{C}\right] + \left[\hat{A}, \hat{D}\right] + \left[\hat{B}, \hat{C}\right] + \left[\hat{B}, \hat{D}\right]$$

(iii) Prove that, in a usual notation,

(a)
$$\left[\hat{x}, \hat{P}_{x}\right] = i\hbar$$

(b)
$$\left[\hat{P}_x, \hat{x}^2\right] = -2i\hbar x$$

- (3) The parity operator $\widehat{\Pi}$ is defined by the operation $\widehat{\Pi} \Psi(x) = \Psi(-x)$.
 - (i) Show that
 - (a) It is a linear operator.
 - (b) It is a Hermitian operator.
 - (ii) Find the eigen values of this operator $\hat{\boldsymbol{\Pi}}$.
- (iii) If the potential energy V is an even function, then show that $\widehat{\prod}$ commutes with the Hamiltanian $\widehat{H} = \frac{\widehat{P}^2}{2m} + V(x)$.
- (4) (a) If \hat{A} is an operator corresponding to a quantum observable and $\langle \hat{A} \rangle$ is the corresponding expectation value, Show that

$$\frac{d\langle \hat{\mathbf{A}} \rangle}{dt} = \langle \frac{\partial \hat{\mathbf{A}}}{\partial t} \rangle + \frac{1}{i\hbar} \langle \left[\hat{\mathbf{A}}, \hat{H} \right] \rangle.$$

(b) A particle of mass m and energy E moves in the positive x direction under square hill potential defined by

$$V = \begin{cases} 0 & ; \ x < 0 \\ V_0 > 0 \ ; \ 0 < x < a \\ 0 & ; \ a < x \end{cases}$$

Find the wave function u(x) for each of the regions given above, for cases $E < V_0$ and $E > V_0$

(5) One dimensional wave function $\psi(x, t)$ is given by

$$\psi(x,t) = B \sin\left(\frac{\pi x}{2a}\right) e^{-i\alpha t}$$
 ; $0 \le x \le a$ where α is a constant.

- (a) If ψ is normalized, find B.
- (b) Calculate the mean values of x, x^2 and \hat{P}_x with respect to $\psi(x)$.
- (c) Calculate (Δx) .

- (6) The angular momentum of a particle is defined as a vector \underline{L} , such that $\underline{L} = \underline{r} \times \underline{p}$, where \underline{p} is the momentum and \underline{r} is the position vector of the particle with respect to a fixed origin O.
 - (a) Write down the Cartesian components \hat{L}_x , \hat{L}_y , \hat{L}_z of the angular momentum operator.
 - (b) Hence obtain the angular momentum operator in spherical polar coordinates (r, θ, ϕ) . Use $\hat{\theta} = \cos\theta\cos\phi \ \underline{i} + \cos\theta\sin\phi \ \underline{j} - \sin\theta \ \underline{k}$ and $\hat{\phi} = -\sin\phi \ \underline{i} + \cos\phi \ \underline{j}$
 - (c) Show that $\left[\hat{L}_y, \hat{L}_z\right] = i\hbar \hat{L}_x$ and $\left[\hat{L}^2, \hat{L}_x\right] = 0$.

3