The Open University of Sri Lanka

B.Sc. /B.Ed. Degree Programme

Final Examination-2013/2014

Applied Mathematics - Level 05

AMU3185 / AME5185 - Electro-Magnetic Theory & Special Relativity

Duration: - Two Hours

Date: 26thNovember 2014

Time: 1.30 p.m. - 3.30 p.m.

Answer Four Questions Only.

You may, wherever necessary, assume that $4\pi\varepsilon = \frac{10^{-9}}{9} Fm^{-1}$.

- 1) (i) State Coulomb's law, used in electrostatic theory.
 - (ii) Two identical pith balls, each of mass m, and carrying a charge Q are suspended from the same point by two weightless strings of length l. If α , the inclination angle of each thread to the vertical is very small at the equilibrium, show that

$$\alpha = \sqrt[3]{\frac{Q^2}{16\pi\varepsilon_0 mgl^2}}$$

where ε_0 permittivity of medium.

- (iii) Three point charges $Q_1 = 1mC$, $Q_2 = 2mC$, and $Q_3 = -3mC$ are located at (0,0,4),(-2,6,1) and (3,-4,-8) respectively. Calculate the force on Q_1 .
- 2) (i)Define following terms, used in electromagnetic theory.
 - a) Electric field
 - b) Neutral Point
 - (ii) Prove the following identities:
 - a) $\nabla . \nabla \times A = 0$
 - b) $\nabla \times \nabla V = 0$

where \underline{A} is any vector potential function and V is any scalar potential function.

(iii) The gradient of a scalar potential function ϕ is given by,

$$\nabla \phi = 3 \left[\left(x^2 - yz \right) \underline{i} + \left(y^2 - xz \right) \underline{j} + (z^2 - xy) \underline{k} \right].$$

If the point (1,1,1) is at zero-potential, determine the potential function ϕ .

- 3) (i) State Gauss law, used in electromagnetic theory.
 - (ii) Suppose a point charge Q is located at the origin. Determine the electric flux intensity due to this charge at a general point $P(r, \theta, \varphi)$.
 - (iii) A charge distribution with spherical symmetry has density

$$\rho_{v} = \begin{cases} \frac{\rho_{0}r}{R}, & 0 \le r \le R \\ 0, & r > R \end{cases}$$

Determine the electric field, E for all regions.

- 4) (i) Write down Poisson's and Laplace's equations in Cartesian, cylindrical and spherical coordinates.
 - (ii) Show that following potential satisfies Laplace's equation $V = 15x^2yz 5y^3z$.
 - (iii) In cylindrical polar coordinates, for a charge distribution, its density is given by $\rho_v = \frac{10}{\rho} \times 10^{-12} Cm^{-3}$. If electric potential, V = 0 at $\rho = 1m$ and V = 100V at $\rho = 4m$, find the V at $\rho = 3m$.
- 5) (i) State Biot-Savart law, used in electromagnetic theory.
 - (ii) Four infinitely long parallel wires carrying equal current I are arranged in such a way that when looking at the cross section, they are at the corners of a square, as shown in the figure. Currents in A and D point out of the page and those at B and C into the page. What is the magnetic field at the centre of the square?

 (Hint: The magnitude of the magnetic field a distance r from

(Hint: The magnitude of the magnetic field a distance r from an infinite wire is $B = \frac{\mu_0 I}{2\pi r}$)

(iii) In a certain conducting region magnetic field intensity,

$$H = yz(x^2 + y^2)\underline{a}_x - y^2xz\underline{a}_y + 4x^2y^2\underline{a}_z Am^{-1}.$$

Show that $\nabla . B = 0$.

where, B is magnetic flux intensity.

- 6) (i) State the meaning of Galilean Transformations.
 - (ii) Derive the Lorentz transformation equations.
 - (iii) With the usual notation verify that the above equations can be expressed in the form

$$x' = x \cosh \alpha - ct \sinh \alpha$$

$$y' = y$$

$$z' = z$$

$$ct' = ct \cosh \alpha - x \sinh \alpha$$
.

where
$$\tanh \alpha = \frac{v}{c}$$
.
