The Open University of Sri Lanka B.Sc./B.Ed. Degree Programme Pure Mathematics – Level 04 Final Examination-2013/2014

PUU2140/PUE4140- Sequences and Series

Duration: Two Hours

Date: 07.06.2014 Time: 01.00 p.m. to 03.00 p.m.

Answer Four Questions Only.

1. (a) Let $\langle x_n \rangle$ be a sequence of real numbers and let $l \in \mathbb{R}$. State the $\varepsilon - N$ definition for $\lim_{n \to \infty} x_n = l$.

Using the definition show that $\lim_{n\to\infty} \left(\frac{n}{\sqrt{n^2+n}}\right) = 1$.

Deduce that the sequence $\left\langle \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right\rangle$ converges.

- (b) Prove that every convergent sequence of real numbers is bounded. Show that if $\langle x_n \rangle$ is a bounded sequence of positive numbers, then $\lim_{n \to \infty} \frac{x_n}{x_1 + x_2 + \dots + x_n} = 0.$
- 2. (a) Prove that every convergent sequence of real numbers is a Cauchy sequence.

Let $\langle a_n \rangle$ be the sequence defined by $a_n = (-1)^n \left(\frac{n+1}{n} \right)$ for each $n \in \mathbb{N}$.

Show that $\langle a_n \rangle$ is not a Cauchy sequence.

Is it convergent? Justify your answer.

- (b) Is it true that $\left\langle \frac{x_n}{y_n} \right\rangle$ is Cauchy, where $\left\langle x_n \right\rangle$ and $\left\langle y_n \right\rangle$ are two Cauchy sequences such that $y_n \neq 0$ for each $n \in \mathbb{N}$? Justify your answer.
- 3. (a) Using the definition show that the sequence $\langle 4+(-1)^n \rangle$ diverges.
 - (b) Let $\langle x_n \rangle$ be a bounded divergent sequence of real numbers and let $\langle y_n \rangle$ be a sequence that converges to zero. Prove that the sequence $\langle x_n y_n \rangle$ converges to zero.

Deduce that $\left\langle -\frac{1+\left(-1\right)^n}{2n}\right\rangle$ converges to zero.

- 4. Prove or disprove each of the following:
 - (a) If $\langle x_n \rangle$ and $\langle y_n \rangle$ are two sequences such that $\langle x_n \rangle$ is a bounded divergent sequence and $\langle y_n \rangle$ is a convergent sequence then $\langle x_n + y_n \rangle$ is a bounded divergent sequence.
 - (b) Let $\langle a_n \rangle$ and $\langle b_n \rangle$ be sequences of real numbers such that $\lim_n a_n = \infty$, $\lim_n b_n = -\infty$. Then $\lim_{n} a_n b_n = -\infty$.
 - (c) Every oscillating sequence is bounded.
 - (d) At least one tail of $\langle x_n \rangle$ is Cauchy, then the sequence $\langle x_n \rangle$ is Cauchy.
 - (e) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are positive-term series and $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges.
- 5. (a) Prove that whenever the root test is inconclusive with regard to the convergence of a series of real numbers, the ratio test is also inconclusive with regard to the convergence of it.
 - (b) Stating clearly the tests you use, test each of the following series for convergence:

(i)
$$\sum_{n=1}^{\infty} \frac{n!}{e^n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{2 + \cos n}{3^n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{2 + \cos n}{3^n}$$
 (iii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n-1}}$

(iv)
$$\sum_{n=1}^{\infty} \frac{2^n}{2^n + 3^n}$$

(v)
$$\sum_{k=1}^{\infty} \frac{k^{20}}{k!}$$

- (c) Find the values of x for which the series $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges.
- 6. (a) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series. Prove that $\sum_{n=1}^{\infty} (a_n b_n)$ is a convergent series and $\sum_{n=0}^{\infty} (a_n - b_n) = \sum_{n=0}^{\infty} a_n - \sum_{n=0}^{\infty} b_n$.
 - (b) Prove that the absolute convergence implies convergence of a series using the following steps:
 - (i) Show that $0 \le x + |x| \le 2|x|$ for every real number x.
 - (ii) Use the Part (i) to show that if $\sum_{i=1}^{\infty} |a_n|$ converges, then $\sum_{i=1}^{\infty} (a_n + |a_n|)$
 - (iii) Use the part (ii) to show that $\sum_{n=1}^{\infty} a_n$ converges, if $\sum_{n=1}^{\infty} |a_n|$ converges.