The Open University of Sri Lanka B.Sc. / B.Ed. Degree Programme- Level 04 Final Examination- 2013/2014 Applied Mathematics AMU 2181/AME 4181-Mathematical Modelling I

Duration:- Two Hours

Date:-23.06.2014 Time:-9.30a.m.-11.30a.m.

Answer Four Questions Only

(1) The input and output per production run of two possible blending processes of an oil refinery are as follows:

	Input		Output		
Process	Crude A	Crude B	Gasoline C	Gasoline D	
1	5	3	5	8	
2	4	5	4	4	

The maximum amount available of Crude A and Crude B are 200 units and 150 units respectively. Market requirements show that at least 100 units of Gasoline C and 80 units of Gasoline D must be produced. The profits per production run from process 1 and process 2 are Rs. 3 and Rs. 4 respectively. It is required to decide on the optimal mix of the two blending processes that leads to the maximum profit. Formulate the problem as a linear programming problem and solve it using graphical method.

(2) A manufacturer of leather belts makes three types of belts A, B and C which are processed on three machines M₁, M₂ and M₃. Processing time (in hours) of each belt on each machine, daily capacity of each machine and profit margin (in rupees) of each belt are given below:

Belt	A	В	С	Total
Machine				
M_1	2	3	-	8
M ₂	-	2	5	10
M ₃	3	2	4	15
Profit (Rs) Margin	3	5	4	

Assuming that all belts produced will be sold, formulate a mathematical model to maximize the profit. Hence, solve the model and write the optimal solution.

(3) Solve the following problem using big M method:

Minimize
$$Z=5x_1+3x_2$$

Subject to

$$x_1 + 2x_2 \le 6$$

$$x_1 + x_2 = 5$$

$$5x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

Verify the solution using the graphical approach.

(4) Consider the following linear programming problem:

$$Minimize Z = 24x_1 + 30x_2$$

Subject to

$$2x_1 + 3x_2 \ge 10$$

$$4x_1 + 9x_2 \ge 15$$

$$3x_1 + 3x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

Formulate the dual of the above problem. Solve the dual problem and hence, write the optimal solution of the primal problem.

(5) Consider the following linear programming problem:

Maximize
$$Z = x_1 + 4x_2$$

Subject to

$$x_1 + 6x_2 \le 24$$

 $x_1 \le 6$
 $x_1, x_2 \ge 0$,

where x_1 and x_2 are quantities of two products produced by a company, and the constraints represents available raw materials and machine time.

- (a) Find the optimum solution for this linear programming problem.
- (b) Find the range over which the objective function can vary for x_1 and the current solution still remains optimal.
- (c) Give an interval for the materials resource over which the current solution remains optimal.
- (6) Consider the following problem:

Maximize
$$Z = 45x_1 + 100x_2 + 30x_3 + 50x_4$$

Subject to

$$7x_1 + 10x_2 + 4x_3 + 9x_4 \le 1200$$

$$3x_1 + 40x_2 + x_3 + x_4 \le 800$$

$$x_1, x_2, x_3, x_4 \ge 0$$

The optimal simplex tableau for the above problem is given below:

Basic Variables	<i>x</i> ₁	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	requirement
x_3	5/3	0	1	7/3	4/15	-1/15	800/3
<i>x</i> ₂	1/30	1	0	-1/30	-1/150	2/75	40/3
Z	-25/3	0	0	-50/3	-22/3	-2/3	

If a new variable x_7 is added to this problem with a column $\begin{pmatrix} 10 \\ 10 \end{pmatrix}$ and corresponding cost coefficient $(c_7) = 120$, find the change in the optimal solution.