The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme

Final Examination, 2014/2015

Applied Mathematics - Level 05

APU3150/APE5150/AMU3181/AME5181 -Fluid Mechanics

Duration:-Two hours

Date: - 20.10.2015

Time:-9:30a.m.-11:30a.m.

Answer FOUR questions (including question 3 and question 6).

- 1. (a) Briefly describe the velocity vector in each of the following types of flows:
 - i. Steady and Un-steady;
 - ii. Uniform and Non-uniform;
 - iii. Laminar and Turbulent;
 - iv. Compressible and Incompressible;
 - v. Rotational and Irrotational.
 - (b) Derive an expression for the acceleration of a fluid particle of velocity $\underline{\mathbf{q}}$ at point P at time t. Given the velocity $\underline{\mathbf{q}} = (4 + xy + 2t)\underline{\mathbf{i}} + 6x^3\underline{\mathbf{j}} + (3xt^2 + z)\underline{\mathbf{k}}$, find the acceleration of a fluid particle at (2, 4, -4) at time t = 3.
- 2. (a) Derive the continuity equation for an incompressible fluid flow in the form $div(\underline{\mathbf{q}}) = 0$. Deduce the continuity equation, for an incompressible fluid in terms of derivatives of Cartesian components of its velocity vector \mathbf{q} .
 - (b) The velocity potential function in a two-dimensional irrotational flow is given by $\phi = (x^2 y^2)$. Verify that the flow is incompressible and find the velocity components and a stream function for this flow.
 - (c) Given $u = x^2y$ and $v = y^2z$ as the two velocity components in the directions of Ox and Oy axes, respectively, find a third component w such that $\underline{\mathbf{q}} = (u, v, w)$ satisfies the continuity equation.

3. (a) Starting from Euler's equation of motion for a perfect fluid, in the form

$$\underline{\mathbf{F}} - \frac{1}{\rho} gradp = \frac{\partial \underline{\mathbf{q}}}{\partial t} + grad\left(\frac{q^2}{2}\right) - \underline{\mathbf{q}} \times curl\underline{\mathbf{q}}$$

derive Bernoulli's equation for irrotational motion of an inviscid homogeneous fluid of constant density.

- (b) The cross-section of a horizontal nozzle reduces uniformly from 100 mm bore diameter at the inlet to 50 mm at the exit. It carries a liquid of density $1000 \ kgm^{-3}$ at a rate of $0.05 \ m^3 s^{-1}$. The pressure at the wide end is $500 \ kPa$. Calculate the pressure at the narrow end, neglecting friction.
- 4. (a) Discuss the difference between path line and streamline.
 - (b) Suppose in a two-dimensional flow the velocity vector $\underline{\mathbf{q}} = (u_r, v_\theta)^T$ is given by

$$\left(\begin{array}{c} u_r \\ v_{\theta} \end{array}\right) = \left(\begin{array}{c} krcos2\theta \\ -krsin2\theta \end{array}\right),$$

for some constant k, in terms of plane polar coordinates. Find a stream function of the flow, and verify that this motion is irrotational.

(c) Consider the two-dimensional flow with Cartesian components of velocity

$$\left(\begin{array}{c} u\\v\end{array}\right) = \left(\begin{array}{c} u_0\\v_0cos(kx-\alpha t)\end{array}\right),$$

where u_0, v_0, k and α are constants. Find the particle path and streamline for the particle which passed through the origin, $(x_0, y_0)^T = (0, 0)^T$ at time t = 0.

- 5. (a) For a two-dimensional irrotational motion of an incompressible fluid, write down the components of velocity vector $\underline{\mathbf{q}} = u\underline{\mathbf{i}} + v\underline{\mathbf{j}}$ in terms of stream function and in terms of the velocity potential.
 - (b) Suppose a uniform stream of velocity U make an angle θ with positive direction of Ox-axis.
 - i. Write down the complex velocity of the stream. Hence obtain the complex potential of the stream.
 - ii. Deduce from result (i) above, the complex potential of the stream, in the case when the stream flows in the negative Ox-direction.
 - iii. Deduce from result (ii) above, the velocity potential and stream function of the stream.
- 6. Show that complex potential of a fluid flow due to a two-dimensional sink at the point A where z=-a and a two-dimensional source at the point B where z=a, each of strength k, is given by the formula $\Omega(z)=kln\left(\frac{z+a}{z-a}\right)$, where a and k are real constants.
 - (a) Obtain the equation for the streamlines and equi-potential lines, in this flow. Verify that these two families of curves are mutually orthogonal.
 - (b) Show that the fluid speed q at any point P is given by $q = \frac{2ka}{PA \cdot PB}$.

 $\Theta\Theta\Theta\Theta\Theta\Theta\Theta\Theta\Theta\Theta$