THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. /B.Ed. Degree Programme

APPLIED MATHEMATICS-LEVEL 05

AMU3186/AME5186- Quantum Mechanics

FINAL EXAMINATION- 2014/2015

Duration: Two Hours.

Time: 1.30 p.m. to 3.30 p.m.

Answer FOUR Questions only.

Date: 06.11.2015

- (1) (i) Define the commutator [A, B] of two operators \hat{A} and \hat{B} .
 - (ii) If \hat{A} , \hat{B} , \hat{C} and \hat{D} are operators, show that

(a)
$$\left[\hat{A}, \hat{B}\right] = -\left[\hat{B}, \hat{A}\right]$$

(b)
$$[\hat{A}, \hat{B} \hat{C}] = [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}]$$

(c)
$$[\hat{A}, \hat{B} + \hat{C} + \hat{D}] = [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}] + [\hat{A}, \hat{D}]$$

(c)
$$[\hat{A}, \hat{B} + \hat{C} + \widehat{D}] = [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}] + [\hat{A}, \widehat{D}]$$

(d) $[\hat{A} + \hat{B}, \hat{C} + \widehat{D}] = [\hat{A}, \hat{C}] + [\hat{A}, \widehat{D}] + [\hat{B}, \hat{C}] + [\hat{B}, \widehat{D}]$

- (iii) Prove that $[\hat{x}, \hat{P}_x] = i\hbar$ where a standard notation has been used.
- (2) A one dimensional wave function $\psi(x, t)$ is given by

$$\psi(x,t) = B \sin\left(\frac{\pi x}{2a}\right) e^{-i\alpha t}$$
; $0 \le x \le a$ where α and a are constants.

- (i) Determine the normalization constant B.
- (ii) Calculate the mean values of x, x^2 and \hat{P} , with respect to $\psi(x)$.
- (iii) Calculate (Δx) where Δx has a usual meaning.
- (3)An X-ray photon of wave length $\lambda = 10^{-10} \ m$ is incident on stationary electron, where $\lambda_c = \frac{h}{mc}$ is the Compton wave length.
- (i) Show that for Compton scattering, $\delta \lambda = \lambda^1 \lambda = 2\lambda_c \sin^2 \frac{\theta}{2}$, where m is the mass of the electron, λ is the wave length of the incident X-ray and λ^1 is the wave length of X-ray scattered through an angle θ .
- (ii) Calculate the Compton shift.

- (iii) Calculate the kinetic energy of the recoiling electron if $m = 9.108 \times 10^{-31}$ kg, $c = 3 \times 10^8$ ms⁻¹, $h = 6.625 \times 10^{-34}$ Js and $\theta = 30^\circ$.
- (4) The parity operator $\widehat{\prod}$ is defined by the operation $\widehat{\prod} \Psi(x) = \Psi(-x)$. Show that
 - (i) it is a linear operator.
 - (ii) it is a Hermitian operator.
 - (iii) Show that $\widehat{\prod}$ commutes with the Hamiltanian $\widehat{H} = \frac{\widehat{P}^2}{2m} + V(x)$, if the potential energy V is an even function,
- (5) The angular momentum of a particle is defined as a vector \underline{L} , such that $\underline{L} = \underline{r} \times \underline{p}$, where \underline{p} is the momentum and \underline{r} is the position vector of the particle with respect to a fixed origin O.
 - (i) Write down the Cartesian components $\hat{L}_x, \hat{L}_y, \hat{L}_z$ of the angular momentum operator.
- (ii) Hence obtain the angular momentum operator in spherical polar coordinates (r, θ, ϕ) . You may use $\underline{\hat{\theta}} = \cos \theta \cos \phi \ \underline{i} + \cos \theta \sin \phi \ \underline{j} \sin \theta \ \underline{k}$ and $\underline{\hat{\phi}} = -\sin \phi \ \underline{i} + \cos \phi \ \underline{j}$.
- (iii) Show that $\left[\hat{L}_{y},\hat{L}_{z}\right]=i\hbar\hat{L}_{x}$ and $\left[\hat{L}^{2},\hat{L}_{x}\right]=0$.
- (6)(i) If \hat{A} is an operator corresponding to a quantum observable and $\langle \hat{A} \rangle$ is the corresponding expectation value, Show that $\frac{d\langle \hat{A} \rangle}{dt} = \langle \frac{\partial \hat{A}}{\partial t} \rangle + \frac{1}{i\hbar} \langle \left[\hat{A}, \hat{H} \right] \rangle$.
 - (ii) A particle of mass m and energy E moves in the positive x direction. A square hill Potential is defined by

$$V = \begin{cases} 0; & x < 0 \\ V_0 > 0; & 0 < x < a \\ 0; & a < x \end{cases}$$
 Here V_0 is a positive constant

Find the wave function u(x) for each of the regions given above for the case $E < V_0$ and $E > V_0$.

What can you say when $E = V_0$.