0 | 00048 |

The Open University of Sri Lanka

ECX 6242 Modern Control Systems
Sunday 21% March 2010, 0930 - 1230 hrs.

Three hours

Up to five questions may be attempted, selecting at least two questions from
each section. However, full credit may be obtained for exceptionally good i
answers to only four questions. All questions carry equal marks. i

Section A

1. Consider the simple RLC circuit shown in the figure, where L and C are ideal
linear elements. R is a non-linear negative resistance.
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L, C and R are positive constants.

a) Show that this circuit may be modelled by the second order differential
equation : il
(2R 1 i

R—pxktomx=

[Hint: Use i and V¢ as state variables.]

b) Express this as two simultaneous first order differential equations.




- Consider the dynamics' of the system defined by

. Consider the system described by the model given below:

. Itis desired to transfér the system defined by:

Jfl = ax%‘l‘xz
X2 = fixy

a) Determine the equilibrium point(s) of this system.

b) Write down its Jacobian matrix, evaluate it at the equilibrium point(s)
and determine the eigen values around the equilibrium poini(s).

¢) Under what conditions of o and B will the system exhibit:
i. Stable conditions,
fi. Instability
lii. Oscillatory motion

around the equilibrium point(s)?

F1=0 SlE+ [

y is a non-zero constant.

a) Is this system completely state controllable?

b) Determine whether it is completely state observable, if the observation
model js:

i y=[1 0] [;;] i, y=[0 1] [i:]

c) Obtain a discrete time model of the system, if it is at regular intervals of
1s.

H=axi+x,+u
XK= fx,+u

from (1,1) to (0,0), in minimum time. The input is constrained by: [u] < 1.
Formuiate this as a problem in optimal control, and write down the

equations that need to be solved, including the end conditions that have to
be satisfied. You need not solve the equations.



Section B

Read the passage given in the Appendix:

The Language of Dynamical Systems
From Chaos on the Web, [Physics 161: Introduction fo Chaos by Prof. Michael

Cross, available at: http://www.cmp.caltech.edu/~mecc/Chaos_Course/

befare you attempt the questions in this section.

5,

Study Figure 2.1 of the text carefully. It represents a system with no
dissipation. Assuming that dissipation is introduced to the system when it
is at a ‘hyperbolic fixed point’, sketch a probable phase trajectory, starting
from that point,

What do you understand by the statement:

“In Hamiltonian systems the dynamics preserves volumes in phase
space.”?

How does this lead to the conclusion that there are no attractors in
Hamiltonian Systems?

[Hamiltonian systems are those where momentum is conserved]

Explain in your own words.

Look at equations 2.9 and 2.10 which give the solution for small values of
B [that is, for the linear case where sin 8= 0 ] of the periodically driven,
damped pendulum.

Why is this called an “attracting limit cycle.”?
Do you agree with the assertion in the last paragraph of the text which

state that dissipative systems (whose phase space volumes are not
conserved, and on some sort of average, contract) need not necessarily

converge fo a point? Give reasons.




Appendix

The Language of Bynamical Systems
From Chaos on the Web, [Physics 161: Introduction fo Chaos by Prof; Michael

Cross, available at; http://www.cmp.caltech.edu/~mcc/Chaos_Course/
Chapter 2
The Language of Dynamical Systems

Thé well known.examplé of the deiven, damped pendulum provides a.conveénient
introduction to some of the language of dynamical systems:.

2.1 The ideal pendulum
' we define 6 as the angular displacement of the pendulum from the equilibriun:

(hanging down) position;, the equation of miction for the oscillations of ad idgal
: penduium‘ is

-§§'+-£-s- 10 =0, @n
where ! is the length-and. g isthe gravitational acceleration, We:can:write (2: 1) as-
two first order equations _ :

b=0 @2
&= —% sin®

introducing the angulai-veloeity o, and thén.can use (@, ) as ‘our phase space:
coordinates. Later, we will introduce a different : pair of coordinatés, using the
:angular momeritum J = MiZew as the second-coordinate (with M the mass of thie
pendulum). The dynamms in‘thie-phase space is given by a series of trajectories;.
as shown-inthe figure: Since there is no-dissipation in‘the equations, the energy is:
-coniserved, and ‘we can imdgine labelling each trajectery by its energy.

Various features are marked on tlie fipure
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‘Figuré 2.1: Phisé space of the-ideal pendulumi

The rest position 8 = @w= () is'called:a““fixed point™. Thisis an “elliptic” fixed

point, singe nearby orbits take the forni of éllipses (orcircles inscaled coordinates):

Naively we might call this a stable fixed point, but since there is no dissipation

perturbations from the fixed point do'nat decay back o the fixed point.
The § coordinaté tuns from — tosr. There is-a;second fixed point at: (7, 0)
corresponding to the: pendulum pointing verfically up: this is a “hyperbolic” fixed

‘point, because nearby-trajectories take this form, Thiese trajectories take an iriitial
point nsar the; fixed point far away, and:we would naively call this an unstable fixed:
‘poirit. '

The rem'ahling'__cjrbits: ate periodic in time, and are called “limit cycles”, For
small energies, near (0, 0) the limit oycles are the familiar simple harmonig motjon,

represented byc ircles oreliipses (stretched circles)inthe phase space. These would

fg‘iW:‘_,-a.single peakin 4 power spectrum, and :WQul'd_ﬁ sound like a pure musical tone.
Tor larger energies, the orbit becomes distorted iri the phasespace’and ate no loniger
simple harmonic. The power specfrum would show harmonics, with additional

-~ frequencies at multiples of the fundamental, and the tone, although representing
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CHAPTER 2. THE LANGUAGE OF DYNAMICAL SYSTEMS 3

one musical note, would sound more complex.

A special pair of orbits leave the hyperbolic fixed point, and then eventually
return to it. (Remember the 8 coordinate wraps around!) These are known as
“homoclinic™ orbits. The dynamics slows down approaching the fixed point, and
the period of the limit cycle orbits diverge as their energy approaches the energy
of the homoclinic orbit: (In other systems we might have a “heferoclinic™ orbit
connecting two different hyperbolic fixed points.)

We know that the ideal pendulum is a Hamiltonian system. This means we can
use the energy to construct a Hamiltonian :

1 ‘ .
H= 7_1'2‘ + Mgl(l — cos §) @2.3)
which ig _]USt the enerngrltten as a function of thetwo * canomcally conjugate
var.lables the angular position §-arid the angulasmomentim J = Towith I = M2
the mioment of inertia. The: Hamiltonian formulation: of the dynamics is then.

AH 7 (2.
=3 - 2.4).

Tt is easy tosee that these are the same as (22).
A very important property of Harmilfonian' systems is that the dynanics ¢ prs-

serves volumgs in' phase space™. This means. that if we start off many copies of -

1he system, with fiittial conditions ﬁlhng some’siall volume in phase space, then
-5 thesystem evolves the voluing of phase space containing the evolving pomts
distorts in shiape; but keepsa fixedvolume:

‘We fitst defirle a velogity in phase spade gwmg the time: dependeuue of the
phase space coordinates, liere

— @) @

Now it is easy to verify from the equations-of motion that this “velacity” is. diver-
gence free:
o« 8d aJ
diyV = — 4+ — =0, 2.6)
i ag + a:J 2.6)
This in fact is & genieral consequerice of the form of the Hamilton equations of
friotion. Just as for an iricompressible fluid, this is equivalent {o volume conserving
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CHAPTER 2. THE LANGUAGE OF DYNAMICAL SYSTEMS 4

flow; as can be seen by integrating over an arbitrary volume and using Gauss’s
theorem.

An immediate consequence:of this result isthat there are no-attractors in Hamil-
fonian systems:- there can be no attracting fixed point to. which initial conditions
distributed over some volume converge, $incg this would yield a-volume of points
in phase space contracting asymptotically to zero.

You can investigate the phase space of the-ideal pendulum in‘demonstration 1.

2.2 The dissipative pendulum

IF we 1dld a dissipative force proportional to thie velogity; the-equation of motion
becomes " | | |
2 ni .
| %g -1-_n,'fi—{j + % sin6 =0 . @7
It-is easy to see that almost all pliase space trajeciories spiral-into ‘the fixed
pointat (0,0). This is now truly a “linearly-stable” fixed point; Sinceif a small
perturbation ismade from the fixed point, the perfurbation decays-in time:(in fact
exponeitially for small enough: perturbations). Or thie other hand the: fixed point:
4t {7r; 0)-is° “Jinearly unstable? because:.a.small perturbation from this fixed point
prows: exponentially. Only very carefully tuned inftial conditions: will lead to a
{rajectory-ending on‘the unstible fixed point; and almost all perfurbations: io the
initial.condition will lead to.a-frajectory that may-approach close to the:unstable:
fixed point, but eventually spirals :into the stable fixed point. The (0, 0) fixed
pointis “aftracting’, and in‘this case: the “basin of aftraction™ i.e. the set-of initial

conditions leading to trajectoriesthat approach the fixed point, is-the whole phase:

space except Tor points on the “stable manifold” of the hyperbolic fixed point
which is:a set.of zero area in'the phase:space.
The dynamical behavior canbe:studied in égmoqsitati:pn-:z.-

2.3 The periodically driven, damped pendulum

The sityation.is more interesting if we also drive the pendulum, feeding in energy
{o-resupply the energy dissipaied. Simple harmonic driving leads to the following
equation

d*e

49 - :
yrel + y-{E +sinf = :g-cds(cdpt). 2.8)

00048




[EER

CHAPTER 2. THE LANGUAGE OQF DYNAMICAL SYSTEMS 5

where we have rescaled time so that the period of small oscillations of the un-
damped and undriven pendulum is unity, and we have written the scaled dissipation
coefficient as p.

Forsmall amplitudes of driving g, and assuming a small initial condition, we-

can replace sin & by # and solve the equation analytically:

& =cos(wpt + @) + Ae 2 cos(wt + a) (2.9)

V= h) + 23,

with

(@.10)

This is the well knows resonant l’eSpOHSF:f (the first term) oscillating at the applied
ﬁ'equency, together with decaying free oscillations (the second term) depending:

on the initial conditions. We would call this solution anattractmg limit cycle.
What liappens for’ large dnvmg amplitudes? Here-there are no analytic solu-~

tions; .and-we must proceed numencally To:gain'some intuition we would like to
view the dynamics in aphase space. Tothis'we convert {he equatnonto autonomous-

fort. by using three variables

b=
& =—yp—sing 4z cos(E?D) (211)
Ep =wp

where we have 1ntroduced e “phase of the dnvmg” GD Thls method of'} gaining,
ar-autonomous forir at thie: expense of air exira equation is a.common and isefin]
trick. We agznn have athrée diniensional phase space as in the Lorénz model: do-

we fihd chaas?

First it is useful to look: agam at volimes in phase: spaca Now we have for the:
diveigeiice of the velocity V=14, GD)

96 aca 30 3
T _— —_— i 2". -
divV = 28 +o—+ T Y (2.12)

-aconstant! This rearis that volumes contract at a constant proportional rate . (The

Lotenz model shiows this special featiire too: there the proportional contraction

fate i§ o 4 1 4 b). Systems whosé phasé space volumes are 1ot conserved, and
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on some sorl of average contract, are called dissipative systems. At first sight we

might expect a volume of initial conditions must contract to a point, i.e. all orbits

approach stable fixed points asymptotically—not very interesting, However this s

not the only possibility. We already know from the small amplitude case that.the
orbits may approach an attracting limit oycle. Even more interesting, a phase space
volume may be stretched in one or more directions, whilst it is contracting in tlie
remaining ones so.that overall the volume contracts. This is the crude description

of how chaos may oceur in purely contracting dissipative systems. How chaos

ocours:in perhaps this simplest and most familiar dynamical system is illustrated
in"demonstratio;:l_s 3-7,

December 24, 1999
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