The Open University of Sri Lanka
B.Sc. / B.Ed. Degree Programme – Level 05
Final Examination -2014/2015
Applied Mathematics
AMU3183/AME5183 — Numerical Methods II



**Duration: Two Hours** 

Date: 05. 05. 2015

Time: 01.00 p.m. - 03.00 p.m.

## Answer Four Questions Only.

1. (a) Prove that

(i) 
$$E = \Delta + 1$$
,

(ii) 
$$E = (1 - \nabla)^{-1}$$
,

where  $\Delta$ ,  $\nabla$  and E are the forward difference, the backward difference and the shift operators respectively

(b) Using Newton- Gregory Forward and Backward interpolating polynomials estimate the population in 1895 and 1925 from the following statistics:

| Year x       | 1891 | 1901 | 1911 | 1921 | 1931 |
|--------------|------|------|------|------|------|
| Population y | 46   | 66   | 81   | 93   | 101  |

- 2. (a) Evaluate the integral  $\int_{0}^{6} \frac{1}{1+x^2} dx$ , using
  - (i) Trapezoidal rule,
  - (ii) Simpson's One third rule, and also compare the results with its actual value.
  - (b) Applying Lagrange's interpolation formula, determine f(5) for the following data.

|   | х    | 1 | 2 | 3 | 4  | 7   |
|---|------|---|---|---|----|-----|
| - | f(x) | 2 | 4 | 8 | 16 | 128 |

- 3. (a) Derive formula for the Euler's method to solve  $\frac{dy}{dx} = f(x, y)$  subject to the initial condition  $y(x_0) = y_0$ .
  - (b) Using Euler's method, solve  $\frac{dy}{dx} = 1 + x y$  with the initial condition y(1) = 2 for the range x = 1.0 to x = 2.0 with h = 0.2 correct to 4 decimal places.
- 4. (a) Derive formula for the modified Euler's method to solve  $\frac{dy}{dx} = f(x, y)$  subject to the initial condition  $y(x_0) = y_0$ .
  - (b) Consider  $\frac{dy}{dx} = x + y$  with the initial condition y(0) = 0. Using Modified Euler's method, compute y(0.6) and y(0.8) correct to 4 decimal places.
- 5. (a) Using the Taylor series method, solve  $\frac{dy}{dx} = x y^2$ , with the initial condition y(0) = 1 at x = 0.1, correct to 4 decimal places.
  - (b) Consider  $\frac{d^2y}{dx^2} = y x$ , y(0) = 2 and y'(0) = 0. Using the Taylor series method, find y(0.2) correct to 4 decimal places.
- 6. (a) State fourth order Runge-Kutta algorithm to solve  $\frac{dy}{dx} = f(x, y)$  subject to the initial condition  $y(x_0) = y_0$ .
  - (b) Using fourth order Runge-Kutta method, compute y(0.1) and y(0.2) correct to four decimal places given that  $\frac{dy}{dx} = -y$ , y(0) = 1.