The Open University of Sri Lanka

B.Sc./B.Ed. Degree Programme

Final Examination-2015/2016

APU3143/APE5143-Mathematical Methods

Applied Mathematics -Level 05

Date: 25.07.2016

Time: 1.00 p.m.- 3.00 p.m.

Answer FOUR questions only.

01. The Laplace transform of a function f(t), denoted by L[f(t)] is defined as

$$L[f(t)] = F(s) = \int_{0}^{\infty} f(t)e^{-st}dt \text{ and the inverse transform as } L^{-1}\{F(s)\} = f(t).$$

(a) If
$$L^{-1}\left\{\frac{\omega s}{(s^2+\omega^2)^2}\right\} = \frac{t \sin t}{2}$$
, show that $L^{-1}\left\{\frac{8s}{(4s^2+1)^2}\right\} = \frac{t}{2}\sin\frac{t}{2}$.

(b) Find the inverse Laplace transforms of each of the following functions:

(i)
$$F(s) = \frac{1}{2} \ln \frac{s^2 + b^2}{s^2 + a^2}$$
. (ii) $F(s) = \left\{ \frac{s}{(s-2)^2 (s+1)} \right\}$.

(c) Show that
$$L^{-1}\left\{\frac{e^{-s}}{(s+1)^3}\right\} = \frac{1}{2}e^{-(t-1)}(t-1)^2u(t-1)$$
;

where u(t) is the unit step function.

02. (a) Use the convolution theorem to find the inverse Laplace transform of

$$\frac{s^2}{(s^2+a^2)(s^2+b^2)}.$$

(b) Solve each of the following boundary value problems using the Laplace transform method:

(i)
$$\frac{d^2y}{dt^2} + 4y = 8$$
, subject to $y(0) = 0$, $y'(0) = 6$.

(ii)
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 0$$
 subject to $y(0) = 2$, $y'(0) = 4$.

- 03. What is the Sturm-Liouville equation?
 - (a) A boundary value problem is given by

$$\frac{d^2y}{dx^2} + \lambda y = 0$$
$$y(0) = 0$$

 $y(\pi) = 0$

Is it a Sturm-Liouville problem? Justify your answer.

(b) Find non-trivial solutions of the problem

$$\frac{d^2 y}{dx^2} + \lambda y = 0$$
$$y(0) = 0, y(\pi) = 0$$

(c) Let $\{\phi_n\}$ be the orthogonal characteristic functions of the problem in part (a). Form the sequence of orthonormal characteristic functions $\{k_n\phi_n\}$

where
$$k_n = \frac{1}{\sqrt{K_n}} = \frac{1}{\sqrt{\int_a^b [\phi_n(x)]^2 r(x) dx}}$$
 $(n = 1, 2, 3...)$

4. (a) Let f(x) be a function defined in the interval $-\pi < x < \pi$. The Fourier series of f(x) is given by

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx \text{ where}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$.

Show that
$$\frac{1}{\pi} \int_{-\pi}^{\pi} [f(x)]^2 dx = 2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$$

(b) Consider the function f(x) defined by

$$f(x) = \begin{cases} \frac{2}{\pi}x + 2 & \text{when } -\pi < x < 0\\ 2 & \text{when } 0 \le x < \pi \end{cases}$$

Find the trigonometric Fourier series of f(x) in $-\pi \le x \le \pi$.

05. (a) The Gamma function, corresponding to the parameter p denoted by $\Gamma(p)$ is defined by the improper integral

$$\Gamma(p) = \int_{0}^{\infty} e^{-t} t^{p-1} dt, \quad (p > 0).$$

(i) Evaluate the following integral using Gamma function:

$$\int_{0}^{1} \sqrt[3]{x \ln\left(\frac{1}{x}\right)} dx$$

- (ii) Show that the area under the normal curve $y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$ and x-axis is unity, where σ is a positive constant.
- (b) The Beta function denoted by $\beta(p,q)$ is defined by $\int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$,

where p > 0 and q > 0 are parameters.

Evaluate each of the following intrigals using Beta function:

(i)
$$\int_0^1 \left(\frac{x^3}{1-x^3}\right)^{\frac{1}{2}} dx$$
. (ii) $\int_0^\infty \frac{x^2}{1+x^4} dx$.

06. Let $J_p(x)$ be the Bessel function of order p given by the expansion

$$J_p(x) = x^p \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+p} \cdot m! \Gamma m! + m + 1}$$

- (a) Show that $J_2'(x) = \left(1 \frac{4}{x^2}\right) J_1(x) + \frac{2}{x} J_0(x)$.
- (b) Express $J_{\frac{7}{2}}(x)$ in terms of sine and cosine functions.
- (c) Evaluate $\int x^4 J_1(x) dx$.