The Open University of Sri Lanka B.Sc/B.Ed. Degree Programme Final Examination - 2015/2016 Pure Mathematics - Level 05 PUU3141/PUE5141 Algebra of Complex Numbers

Duration: Two Hours

Date: 22.07.2016 Time: 09.30am - 11.30am

Answer FOUR questions ONLY.

NOTE: Throughout this paper \mathbb{C} denotes the set of complex numbers, \mathbb{R} denotes the set of real numbers and \mathbb{Z} denotes the set of integers.

- 1. (a) Let $z \in \mathbb{C}$ such that Imz > 0. Prove that $Im(z^{-1}) < 0$ and $Im((\overline{z})^{-1}) > 0$.
 - (b) Prove that $z^2 \in \mathbb{R}$ if and only if z is pure imaginary or $z \in \mathbb{R}$.
 - (c) Find $z \in \mathbb{C}$ such that

i.
$$Re(z(1+i)) + z\overline{z} = 0$$
,

ii.
$$Re(z^2) + iIm(\overline{z}(1+2i))_i = -3.$$

2. (a) Let $z \in \mathbb{C}$. Suppose that $|z| = \frac{1}{2}$. Prove that

i.
$$|z^2 - 3z + 5| \le \frac{27}{4}$$
,

ii.
$$|z^5 - 6| \ge \frac{191}{32}$$
.

- (b) Let $z \in \mathbb{C}$ and $a \in \mathbb{R}$ such that $z \neq a$ and |z| = a. Show that $i\left(\frac{a+z}{a-z}\right) \in \mathbb{R}$.
- (c) Let $z \in \mathbb{C}$ such that |z-3-i|=|z-4-2i| and |z-5-7i|=|z+1+i|. Find z.
- 3. (a) Find all the complex numbers z such that $arg(z+1)=\frac{\pi}{4}+2n\pi,\ n\in\mathbb{Z}$ and $arg(z-1)=\frac{3\pi}{4}+2n\pi,\ n\in\mathbb{Z}.$
 - (b) Suppose $z_1, z_2 \in \mathbb{C}$ and $z_1 \neq z_2$ such that $|z_1 + \overline{z}_2| = |z_1 \overline{z}_2|$. Show that $arg(z_1) + arg(z_2) = \frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}$ or $arg(z_1) + arg(z_2) = -\frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}$.

- (c) Let $z \in \mathbb{C}$. Find the locus of $Re\left(\frac{z-4i}{z+2i}\right) = 0$.
- 4. State the De Moivre's theorem for any $n \in \mathbb{Z}$.
 - (a) Write the complex number $(1+i)(\sqrt{3}+i)$ in polar form and hence deduce the values for $\cos\left(\frac{5\pi}{12}\right)$ and $\sin\left(\frac{5\pi}{12}\right)$.
 - (b) Evaluate $[(\sqrt{3}-1)+i(\sqrt{3}+1)]^{-24}$.
 - (c) Evaluate $(-81)^{\frac{1}{4}}$. Deduce the list of complex numbers for $(-81)^{\frac{3}{4}}$.
- 5. (a) Let $z \in \mathbb{C}$. Prove that $|e^z| = 1$ if and only if z is pure imaginary.
 - (b) Show that $Re\left[\frac{1}{1-(e^{i\theta}/2)}\right] = \frac{4-2\cos\theta}{5-4\cos\theta}$ for any $\theta \in \mathbb{R}$.
 - (c) Let $z \in \mathbb{C}$. Solve $\frac{1}{2}\sin 2z \sin z + 2i(1 \cos z) = 0$.
- 6. Let $z \in \mathbb{C}$.
 - (a) Show that the complex number 2+3i is a root of the equation $z^4-12z^3+62z^2-172z+221=0$.

Hence find all the roots of $z^4 - 12z^3 + 62z^2 - 172z + 221 = 0$.

- (b) Find all the roots of the equation $log z = \left(\frac{17\pi}{2}\right)i$.
- (c) Evaluate

i.
$$(1-i)^{\pi}$$
,
ii. $(1-i)^{1+i}$.

ii.
$$(1-i)^{1+i}$$