The Open University of Sri Lanka
B.Sc/B.Ed. Degree Programme

Continuous Assessment Test (OBT) - 2015/2016
Pure Mathematics - Level 04
PUU2140/PUE4140-Sequences and Series
Duration: - One hour

Date: -19-04-2016

Time: - 4: $15 \mathrm{pm}-5.15 \mathrm{pm}$.

1. (i) Find two sequences $\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle$ such that $\left\langle x_{n}+y_{n}\right\rangle=\langle 1\rangle$ and $\left\langle x_{n} y_{n}\right\rangle=\langle 0\rangle$.
(ii) Find two unbounded sequences $\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle$ such that $\left\langle x_{n}+y_{n}\right\rangle$ is bounded.
(iii) Find two sequences $\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle$ such that both $\left\langle x_{n}\right\rangle,\left\langle y_{n}\right\rangle$ converge to 0 and for each $n \in \mathbb{N}, x_{n}<y_{n}$.
(iv) Let x be a positive real number. Prove that $\left\langle\left(1+\frac{x}{n}\right)^{n}\right\rangle$ is strictly increasing.
2. (i) Use ε-definition of limit to prove that $\lim _{n} \frac{n+1}{2 n+3}=\frac{1}{2}$.
(ii) Suppose $\left\langle x_{n}\right\rangle$ is a sequence such that for each $\varepsilon>0,\left\{n \in \mathbb{N}:\left|x_{n}-x\right| \geq \varepsilon\right\}$ is a finite set. Does it follow that $\left\langle x_{n}\right\rangle$ converge to x ?. Justify your answer.
(iii) Use the definition of limit to prove that $\lim _{n} \frac{n^{2}+2}{n+1}=\infty$.
