The Open University of Sri Lanka B.Sc/B.Ed. Degree Programme Continuous Assessment Test (OBT) - 2015/2016 Pure Mathematics - Level 04 PUU2140/PUE4140- Sequences and Series Duration: - One hour

Date: - 19-04-2016

Time: - 4:15pm - 5.15pm.

- 01. (i) Find two sequences $\langle x_n \rangle, \langle y_n \rangle$ such that $\langle x_n + y_n \rangle = \langle 1 \rangle$ and $\langle x_n y_n \rangle = \langle 0 \rangle$.
 - (ii) Find two unbounded sequences $\langle x_n \rangle, \langle y_n \rangle$ such that $\langle x_n + y_n \rangle$ is bounded.
 - (iii) Find two sequences $\langle x_n \rangle, \langle y_n \rangle$ such that both $\langle x_n \rangle, \langle y_n \rangle$ converge to 0 and for each

 $n \in \mathbb{N}, x_n < y_n$.

(iv) Let x be a positive real number. Prove that $\left\langle \left(1 + \frac{x}{n}\right)^n \right\rangle$ is strictly increasing.

02. (i) Use ε - definition of limit to prove that $\lim_{n} \frac{n+1}{2n+3} = \frac{1}{2}$.

(ii) Suppose $\langle x_n \rangle$ is a sequence such that for each $\varepsilon > 0$, $\{n \in \mathbb{N} : |x_n - x| \ge \varepsilon\}$ is a finite set. Does it follow that $\langle x_n \rangle$ converge to x?. Justify your answer.

(iii) Use the definition of limit to prove that $\lim_{n} \frac{n^2 + 2}{n+1} = \infty$.