THE OPEN UNIVERSITY OF SRI LANKA
B.Sc. DEGREE PROGRAMME
PURE MATHEMATICS -LEVEL 05
PUU3244/PUE5244 — Number Theory & Polynomials
OPEN BOOK TEST-2016/2017

DURATION: ONE AND HALF (1 1/2) HOURS

Date: 01.10. 2017 12.00noon

Time: 10:30a.m. -

ANSWER ALL QUESTIONS.

- 1. (i) Which of the following are inductive sets? Justify your answer.
 - (a) $[1,\infty)$ (b) $(-1,\infty)$ (c) $(-\infty,10^8)$ (d) $(1,\infty)$
 - (ii) Using Mathematical Induction prove that $n! \ge 2^{n-1}$ for all $n \in \mathbb{N}$. Deduce that $\sum_{k=1}^{n} \frac{1}{k!} \le 2 \frac{1}{2^{n-1}}$. Hence show that $e \le 3$; where e is the base of natural logarithm.
 - (iii) Show that $(p+q)^n p^n q^n$ is divisible by pq where p, q and n are positive integers.
- 2 (i) Find the greatest common divisor g of 12378 and 3054, and hence find integers x and y such that 12378x + 3054y = g.
 - (ii) Find the least common multiple of 1479 and 272.
 - (iii) Let $R = \{a + ib\sqrt{5} : a, b \in \mathbb{Z}\}$. Let $f(x) = 6x^2 + 2\sqrt{5}ix 1$ and $g(x) = (1 + i\sqrt{5})x 1$ are in R[x].
 - (a) Show that the units in R are ± 1 .
 - (b) Show that g is a divisor of f.
 - (c) Show further that f and g do not have a greatest common divisor.

- 3. (i) Let $f(x) = x^5 2x^4 + 3x 5$ and g(x) = 2x + 1 in $\mathbb{Z}_{11}[x]$. Is $g \mid f$ in $\mathbb{Z}_{11}[x]$? Justify your answer.
 - (ii) Factorize the polynomial $f(x) = 2x^3 + 3x^2 7x 5$ as a product of linear factors in $\mathbb{Z}_{11}[x]$.
 - (ii) If F is a field and $a \ne 0$ is a zero of $f(x) = a_0 + a_1 x + \dots + a_n x^n$ in F[x], show that 1/a is a zero of $a_n + a_{n-1} x + \dots + a_0 x^n$.