The Open University of Sri Lanka B.Sc/B.Ed. Degree Programme Final Examination - 2017/2018 Pure Mathematics - Level 04 PEU4300/PEE4300- Real Analysis I

Duration: - Two Hours

Date: - 17-09-2018 Time: -1.30 p.m -3.30 p.m.

Answer Four questions only.

- 1 (a) Prove that the sequence $\left(\frac{10n-1}{50-n^2}\right)$ is bounded. Write down the greatest lower bound and the least upper bound. Find whether the sequence is monotonic. Justify your answer.
 - (b) Let $a_n = n 1 \sqrt{n^2 1}$. Using the definition of convergent sequence, prove that the sequence $\langle a_n \rangle$ is convergent.
 - (c) Suppose the sequence (b_n) is convergent and the set $\{b_n : n \in \mathbb{N}\}$ is finite. Prove that there exists $n_0 \in \mathbb{N}$ such that $b_n = c$ for all $n \ge n_0$, where c is a real number.
- 2. Let a and D be positive real numbers. The sequence $\langle s_n \rangle$ is defined recursively by, $s_1 = a$, $s_{n+1} = \frac{1}{2} \left(s_n + \frac{D}{s_n} \right)$ for $n \in \mathbb{N}$.
 - (i) Prove that $s_{n+1} \ge \sqrt{D}$ for $n \ge 2$.
 - (ii) Prove that $s_{n+1} \le s_n$ for $n \ge 2$.
 - (iii) Deduce that (s_n) is convergent and find its limit.
 - (iv) Prove that $\langle s_n \rangle$ is a constant sequence iff $s_1 = \sqrt{D}$.
- 3. (i) Show that the sequence $\left\langle \sum_{k=1}^{n} \frac{1}{(k-1)!} \right\rangle$ is bounded above. (Recall that 0! = 1)
 - (ii) Show that the sequence $\left(\left(1+\frac{1}{n}\right)^n\right)$ is strictly increasing. (Hint: consider $c_k=1+\frac{1}{n}$ for k=1,2,3,...n and $c_{n+1}=1$ and use the arithmetic geometric inequality $\frac{1}{n+1}\left(c_1+c_2+...+c_{n+1}\right)>\left(c_1c_2...c_{n+1}\right)^{\frac{1}{n+1}}$ for positive reals c_1 , c_0 , ... c_{n+1} .
 - (iii) Show that the sequence $\langle (1 + \frac{1}{n})^n \rangle$ is bounded above.

- 4 (a) Prove that the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converge iff |r| < 1.
 - (b) Let r be a real number such that 0 < r < 1 and $m \in \mathbb{N}$. Prove that $0 < r^m < \frac{r}{m(1-r)}$.
 - (c) Prove that $\sum_{i=(n+1)}^{2n} \frac{1}{i} \ge \frac{1}{2}$, for any $n \in \mathbb{N}$. Deduce that $\sum_{i=1}^{2m} \frac{1}{i} \ge 1 + \frac{m}{2}$ for any $m \in \mathbb{N}$.
- 5 (a) Find whether each of the following series is convergent or divergent. Justify your answer.

(i)
$$\sum_{n=1}^{\infty} \left(\sqrt{n+1} - \sqrt{n+2} \right)$$

(ii)
$$\sum_{n=1}^{\infty} \frac{(n^2+10)}{(1-2n+n^2)}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{(2^n + (-2)^n + 2)}$$

(iv)
$$\sum_{n=1}^{\infty} \left(\frac{2^n \cdot n^{100}}{3^n} \right)$$

(v)
$$\sum_{n=1}^{\infty} a_n$$
, where $a_n = \begin{cases} r^{n+1}, & n \text{ is even} \\ r^{n-1}, & n \text{ is odd} \end{cases}$ and $0 < r < 1$.

6 (a) Find the lim sup and lim inf of each of the following sequences.

(i)
$$\left\langle \sin\left(\frac{n\pi}{3}\right)\right\rangle$$
 (ii) $\left\langle (-1)^n\left(2+\frac{3}{n}\right)\right\rangle$ (iii) $\left\langle \sum_{k=1}^n \frac{(-1)^k}{2^k}\right\rangle$

(b) Find the radius of convergence of each of the following power series.

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right) x^n$$
 (ii) $\sum_{n=1}^{\infty} a_n x^n$, where $a_n = \begin{cases} \frac{1}{2^n}, & n \text{ is even} \\ \frac{1}{n}, & n \text{ is odd} \end{cases}$.