The Open University of Sri Lanka
Department of Mathematics
B.Sc/ B.Ed Degree Programme
Final Examination - 2017/ 2018
Pure Mathematics—Level 05
PEU5304 — Introduction to Complex Analysis

DURATION: TWO HOURS

Date: 04 - 10 - 2018

Time: 9.30 a.m. - 11.30 a.m.

ANSWER FOUR QUESTIONS ONLY

- 01. Let z be a complex number. Prove or disprove each of the following statements:
 - (a) There is no pure imaginary number z satisfying $z^2 = z$.
 - (b) If Im(z) non-negative, then $Im(z^{-1})$ is also non-negative.

(c)
$$\left[\left(-1 \right)^2 \right]^{\frac{1}{2}} = \left[\left(-1 \right)^{\frac{1}{2}} \right]^2$$
.

- (d) $\exp(z)$ is real if and only if $\operatorname{Im}(z) = n\pi$, $n \in \mathbb{Z}$.
- (e) For each $z \in \mathbb{C}$, $\cosh^2 z \sinh^2 z = 1$.
- (f) For all $z \in \mathbb{C} \{0\}$, $Arg(\overline{z}) = Arg(z)$.
- (g) z is a real number if and only if $z = \overline{z}$.
- (h) $z\overline{z} \ge 0$ and $z\overline{z} = 0$ if and only if z = 0.
- 02. Let z_1 and z_2 be two complex numbers.
 - (a) Prove that $|z_1 + z_2|^2 = |z_1|^2 + 2 \operatorname{Re}(z_1 \overline{z}_2) + |z_2|^2$.

Hence, derive the triangle inequality for complex numbers.

Deduce that $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$.

(b) Show each of the following inequalities:

(i)
$$\left| \frac{z_1 + z_2}{z_3 - z_4} \right| \le \frac{\left| z_1 \right| + \left| z_2 \right|}{\left\| z_3 \right| - \left| z_4 \right\|}$$
 when $\left| z_3 \right| \ne \left| z_4 \right|$,

(ii)
$$\left| \text{Re} \left(6 - \overline{z}_1 + 3z_1^2 \right) \right| < 20 \text{ when } |z_1| < 2$$
,

(iii) If
$$z_2$$
 lies on the circle $|z_2|=3$, then $\left|\frac{1}{z_2^4-5z_2^2+4}\right| \le \frac{1}{40}$.

- 03. Let z_1 and z_2 be two non-zero complex numbers.
 - (a) Show that $z_1 \overline{z}_2$ is a non-zero complex number with $|z_1 \overline{z}_2| = |z_1||z_2|$ and $\arg(z_1 \overline{z}_2) = \arg(z_1) \arg(z_2)$.

Hence, write down the product of the complex number -1+i and $\sqrt{3}-i$ in polar form.

Is
$$\left(\frac{\sqrt{3}-i}{2}\right)^{2018} = \left(\frac{1-\sqrt{3}i}{2}\right)$$
? Justify your answer.

(b) Prove that
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
.

- 04. (a) Locate the complex numbers $z_1 = 5 + 2i$, $z_2 = -1 + 4i$ and $z_3 = 4 + 6i$ in a complex plane. Represent $z_1 + z_2$ and $2z_2 - z_3$ in the same complex plane.
 - (b) Find the locus of the points in a complex plane that represents each of the following complex numbers z such that:

(i)
$$A \operatorname{rg} (z + 2 - 3i) = \frac{4\pi}{5}$$
,

(ii)
$$|(1-i)z+2|=4$$
,

(iii)
$$\operatorname{Re}\left(\frac{z-5i}{z+3i}\right) = 0$$
 when $z \neq 3i$.

- 05. Let θ be any real number and let n be any integer. State De Moivre's theorem for complex numbers.
 - (a) Establish the identity $1+z+z^2+...+z^n=\frac{1-z^{n+1}}{1-z}$ for $z\in\mathbb{C}-\{1\}$.

Hence, derive that
$$1 + \cos \theta + \cos 2\theta + ... + \cos n\theta = \frac{1}{2} + \frac{\sin\left[\left(n + \frac{1}{2}\right)\theta\right]}{2\sin\left(\frac{\theta}{2}\right)}$$
, $0 < \theta < 2\pi$.

- (b) Show that for all $z_1, z_2 \in \mathbb{C}$, if $\exp(z_1) = \exp(z_2)$ then $z_1 = z_2 + 2n\pi i$ for some $n \in \mathbb{Z}$. Hence, find all the complex numbers z such that $\exp(z) = 1$.
- 06. Let z be a complex number.
 - (a) Find the four roots of the equation $z^4 + 4 = 0$. Hence, use them to factor $z^4 + 4$ into quadratic factors with real coefficients.
 - (b) Find the primitive fourth roots of unity.
 - (c) Verify that 1-2i is a factor of the polynomial $p(z) = z^4 + 3z^2 + 6z + 10$. Find all the roots of the equation p(z) = 0.