

The Open University of Sri Lanka B. Sc. Degree /Continuing Education Programme — Level 4 Final Examination — 2013/2014 CHU 2124/CHE 4124 — Physical Chemistry I

2 hours

3rd July 2014

9.30 a.m. — 11.30 a.m.

- This question paper consists of six (6) questions, three (3) in Part A and three (3) in Part B
- Answer four questions only, selecting two (02) questions from Part A and two (02) questions from Part B.
- If more than four (4) questions are answered, **only the first two** from each part, in order of writing, will be marked.
- Use of a non-programmable calculator is permitted.
- Mobile phones are prohibited; switch off and leave them outside.

who he phones are promoted, switch our and leave them causide.		
Gas constant (R)	=	$8.314 \text{ JK}^{-1} \text{mol}^{-1}$
Avogadro constant (N _A)	. =	$6.023 \times 10^{23} \text{ mol}^{-1}$
Faraday constant (F)	=	96,500 C mol ⁻¹
Planck's constant (h)	=	$6.63 \times 10^{-34} \text{ Js}$
Velocity of light (c)	_ =	$3.0 \times 10^8 \text{ m s}^{-1}$
Protonic charge (e)	= ,	$1.602 \times 10^{-19} \text{ C}$
Standard atmospheric pressure	=	$10^5 \text{ Pa}(\text{Nm}^{-2})$

Part A

1. (a) Under what conditions if any, and to what type of systems are the following thermodynamic expressions applicable?

(i)
$$q = nRT \ln \frac{V_2}{V_1}$$

(ii)
$$\Delta A = \Delta U - T \Delta S$$

(iii)
$$\Delta G = 0$$

(iv)
$$\Delta S = \frac{\Delta H}{T}$$

(v)
$$(\gamma - 1) \ln V + \ln T = constant$$

(40 marks)

(b) (i) Starting from the first law of thermodynamics, derive the fundamental equation dH = TdS + VdP for a reversible process in a closed system.

(ii) Write down the Maxwell relationship that can be derived using the above equation.

(30 marks)

(c)1000 moles of a monatomic ideal gas ($C_{v,m}$ = 3R/2) is heated from 27 °C to 327 °C at constant pressure. Calculate ΔH and ΔS for this process.

(30 marks)

- 2. (a) Write down the equation, that relates
 - (i) the standard free energy change, ΔG^{o} , to the equilibrium constant, K, of a chemical reaction.
 - (ii) the variation of the equilibrium constant, K with temperature, T
 - (iii) the enthalpy change at one temperature if the enthalpy change at another temperature is known

(30 marks)

(b) The variation of the equilibrium constant K of a reaction at thermodynamic temperature, T, is given by the equation, $\ln K = 9.45 - \frac{490}{T/K}$. Calculate ΔG^o for this reaction at $60\,^{0}$ C.

(30 marks)

- (c) (i) Define "Joule-Thompson Coefficient, μ_{JT} , using a mathematical expression.
 - (ii) A gas at 25°C undergoes * Joule-Thompson expansion from 20 atm to 10 atm. Calculate the final temperature that will be attained by the gas as a result of this expansion (μ_{JT} for the gas = 1.3 K atm⁻¹)

(40 marks)

3. (a) (i) Write down the Clausius Clapeyron equation and identify all the terms in it. (ii) Under what conditions and to what kind of systems can the Clausius – Clapeyron equation be applied.

(40 marks)

(b) The temperature dependence of the vapour pressure of the solid and liquid form of a given compound "A" are given below;

Solid A:
$$\log_{10} P/torr = 10 - \frac{2000}{T/K}$$

Liquid A:
$$\log_{10} P/torr = 6 - \frac{1500}{T/K}$$

Deduce the temperature corresponding to the triple point of "A". State any assumptions you make.

(30 marks)

- (c) Write down the mathematical form of the second law of thermodynamics for spontaneous, equilibrium processes,
 - (i) based on the entropy change that takes place in an experimental system
 - (ii) the entropy change in the universe
 - (iii) based on Gibbs free energy criteria

(30 marks)

Part B

- 4. (a) (i) Write down the mathematical expressions for the following using the standard symbols; identify, clearly, all the symbols used.
 - (α) Raoults Law
- (β) Phase rule
- (ii) Consider the following system in equilibrium

$$PCl_{5(s)} \longrightarrow PCl_{3(S)} + Cl_{2(g)}$$

Give the number of the phases and components in the above system in accordance with the above rule

(24 marks)

(b) 4.6 g of formic acid is mixed with 50.00 ml of pure ethanol (density = 9.0×10^5 g m⁻³)

Calculate the mole fraction of the solvent. (relative atomic mass: H = 1.0; O = 16.0; C = 12.0)

(12 marks)

(c) Define Pressure and derive the SI units of Pressure

Liquids A and B form an ideal mixture, miscible at all compositions. When the mole fraction of B in the liquid phase is 0.80, the vapour pressure of the system is 2.4×10^5 Pa. The vapour pressure of pure A is 4.0×10^5 Pa.

- (i) Calculate the vapour pressure of pure B
- (ii) Sketch the Pressure vs Composition phase diagram with appropriate labels for the above system.
- (iii) Calculate the mole fraction of **B** in the vapour phase corresponding to the composition given above.

(36 marks)

- (d) The normal boiling points of pure liquids, **P** and **Q**, respectively, are 160 °C and 200 °C. An equi-molar mixture of **P** and **Q** forms an azeotrope whose normal boiling point is 150 °C.
 - (i) What do you understand by the term "azeotrope"?
 - (ii) Sketch the Temperature vs Composition phase diagram for the above system and label it completely.

(28 marks)

5. (a) List three factors that determine the molar extinction coefficient of a given pure compound in a dilute solution.

(12 marks)

- (b) (i) Write down the Beer-Lambert law, for the absorbance of a pure compound in dilute solution, in mathematical form and identify all the parameters in it.
 - (ii) Consider a sample of a solution of a pure compound X, in a cell of path length 1.50 cm, placed in a single beam spectrometer for the measurement of the absorbance using electromagnetic radiation of frequency, $4.5 \times 10^2 \, \text{Hz}$ at $25^0 \, \text{C}$. The concentration of X in the solution is $0.010 \, \text{mol dm}^{-3}$ and the molar extinction coefficient of X in the solution for radiation of frequency $4.5 \times 10^2 \, \text{Hz}$ at $25^0 \, \text{C}$ is $66.0 \, \text{dm}^3 \, \text{mol}^{-1} \, \text{cm}^{-1}$.
 - (a) Calculate the absorbance of the solution in the sample cell for radiation of frequency, 4.5×10^2 Hz at 25^0 C. State assumption/s, if any, you make in this calculation.
 - (β) Calculate the intensity of the emergent beam of radiation if the intensity of the incident beam is $4.0\times10^{-5}~W~m^{-2}$. State assumption/s, if any, you make in this calculation.

(53 marks)

(c) A hypothetical molecule has only 3 energy levels with energy E_1 , E_2 and E_3 . The absorption spectrum at low temperature has only two lines as shown in the following figure.

Here, $\overline{\nu}_1 = 1800~\text{cm}^{-1}$ and $\overline{\nu}_2 = 2000~\text{cm}^{-1}$. Calculate E_2 and E_3 if $E_1 = 1.00 \times 10^{-20}~\text{J}$. State assumption/s, if any, you make in this calculation. (35 marks)

6. (a) What is meant by "eutectic composition" with respect to a binary system.?

(10 marks)

(b) Metal A (Melting Point = 700 °C) and Metal B (Melting Point = 1250 °C) form a compound with a congruent Melting Point of 900 °C Two eutectics are formed, with the following Melting Points: 400 °C, and 500 °C.

Copy the phase diagram given below and clearly indicate the temperature values given above on this diagram.

- (i) Write down the formula of the compound formed between A and B.
- (ii) What are the compositions of the two eutectics formed between A and B in terms of the mole fraction of A?
- (iii) Identify, clearly, the regions, labeled as P, Q, S₁ and S₂
- (iv) Sketch cooling curves corresponding to a melt represented by the point L and M respectively. Identify the points "break" and "halt" in your sketch and explain the reason for their appearance in the cooling curve

(40 marks)

- (b) Rotational energy of a molecule of $H^{35}Cl$ is given by $\overline{E}_J = B(cm^{-1})J(J+1)$.
 - (i) Identify all the parameters in the above expression for rotational energy.
 - (ii) What is the specific selection rule in the microwave spectroscopy of H³⁵Cl?
 - (iii) Starting with the expression for rotational energy levels, derive an equation for the positions of lines in the microwave spectrum of $\mathrm{H}^{35}\mathrm{Cl}$.
 - (iv) Four consecutive lines in the microwave spectrum of $H^{35}Cl$ are sketched in the following figure.

- (a) Calculate the rotational constant of $\boldsymbol{H}^{35}\boldsymbol{C}\boldsymbol{l}$.
- (β) Identify the rotational transitions that produce the four lines in the above diagram

(50 marks)