The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme - Level 04

Final Examination - 2017/2018

Pure Mathematics

PEU4316/PUU2143 - Differentiable Functions

Duration: - Two Hours.

Date: -22.04.2019

Time: - 1.30 p.m. - 3.30 p.m.

Answer 04 Questions.

- (01). (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$ for each $x \in \mathbb{R}$ and $c \in \mathbb{R}$. Using $\varepsilon \delta$ definition prove that f is differentiable at c and that f'(c) = 2c.
 - (b) Let $g(x) = \begin{cases} x-1, & x>1 \\ 0, & x \le 1 \end{cases}$, for $x \in \mathbb{R}$. Prove that g is not differentiable at 1.
 - (c) Find a function f such that f is not differentiable at 1 and |f| is differentiable at 1.
- (02). (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = 3x^2 + 5x + 7$. Using $\varepsilon \delta$ definition. Show that f is differentiable at 0 that f'(0) = 5.
 - (b) Let f and g be functions and $c \in \mathbb{R}$ such that $(c \delta_0, c + \delta_0) \subseteq \text{Domm}(f) \cap \text{Domm}(g)$ for some $\delta_0 > 0$ and both f, g are differentiable at c. Prove that f + g is differentiable at c and that (f + g)'(c) = f'(c) + g'(c).
 - (c) Find two functions f and g such that both are not differentiable at 3 but f + g is differentiable at 3.
- (03). (a) Let f be a function and $c \in \mathbb{R}$ such that $(c-\delta,c+\delta) \subseteq \mathrm{Domn}(f)$ for some $\delta > 0$. Prove that if f is differentiable at c, then f is continuous at c. Is the converse true? Justify your answer.
 - (b) (i) Show that the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} \\ x, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
. Prove that the function is nowhere differentiable.

- (ii) Find a function g define on \mathbb{R} such that g is differentiable at 0, but not differentiable at all other points.
- (04). (a) Let $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}$, a,b,c are real numbers such that $a \neq 0$ Show that for each $x \in \mathbb{R}$, $f(x) - f\left(\frac{-b}{2a}\right) = a\left(x + \frac{b}{2a}\right)^2$.

Deduce that

- (i). f has a local minimum at $\frac{-b}{2a}$ if a > 0
 - (ii). f has a local maximum at $\frac{-b}{2a}$ if a < 0.

(b) Define
$$f:(-1,1) \to \mathbb{R}$$
 by $f(x) = \begin{cases} x^4 \sin(\frac{1}{x}), x \in (-1,1) \setminus \{0\} \\ 0, x = 0 \end{cases}$

Show that f is differentiable at 0 and f'(0) = 0. Is f(0) a local maximum of f?. Justify your answer.

(c) Define
$$g:(-1,1) \to \mathbb{R}$$
 by $g(x) = \begin{cases} -x+1, & 0 \le x < 1 \\ x+1, & -1 < x \le 0 \end{cases}$.

Show that g(0) is an absolute maximum of g. Is g differentiable at 0? Justify your answer.

(05). (a) State Rolle's Theorem.

State and deduce the Mean Value Theorem.

Find a function f define on [-1,1] such that f is continuous on [-1,1], f(-1)=f(1)=0, f is differentiable on $(-1,1)\setminus\{0\}$ and there does not exist $c\in(-1,1)$ such that f'(c)=0.

(b) Suppose f is a continuous function on (a,b) and f is differentiable on $(a,b)\setminus\{c\}$ where $c\in(a,b)$. Prove that if $\lim_{x\to c}f'(x)=l$, then f is differentiable at c and f'(c)=l, where $l\in\mathbb{R}$. (Hint: use Generalized Mean Value Theorem)

Let $h(x) = e^x \cos x$, $x \in \mathbb{R}$. Find $h^{(5)}(x)$ for each $x \in \mathbb{R}$.

(b) Evaluate each of the following limit.

(i)
$$\lim_{x \to 1} \frac{\log(x)}{x - 1}$$

(ii)
$$\lim_{x \to 1^-} \frac{\sin(1-x)}{\sqrt{1-x}}$$

(ii)
$$\lim_{x \to 1^-} \frac{\sin(1-x)}{\sqrt{1-x}}$$
 (iii)
$$\lim_{x \to 0^+} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$$