The Open University of Sri Lanka Department of Electrical and Computer Engineering

ECX3210 - Electrotechniques

Final Examination 2011/2012

Closed Book Test

Date: 11th March 2012 Time: 14.00-17.00

Answer any 5 questions. All questions carry equal marks. Show all relevant steps of calculation.

1) a. Describe the two Kirchhoff's Laws. Indicate the two underlying principles these are based upon.

- b. For the circuit in Figure 1 given above
 - i. Calculate the currents flowing through all the resistors.
 - ii. What is the power output of each source?
 - iii. Calculate the potential at point P.

The initial electrical energy stored in source E₂ is given as 10 kJ. The other sources have 100 kJ each.

- iv. How long will E2 be able to supply energy to the circuit?
- 2) a. Describe briefly the main parts and the functioning of a simple ac generator.
 - b. How could you simply convert this to a simple dc generator?

Indicate the output waveform in each case.

- c. The rectangular loop of wire, of dimensions 6 cm × 8 cm shown in Figure Q2 is pivoted about the shorter side on a frictionless axis xy within a vertical magnetic field {(a) front view, (b) side view}. It has a mass of 0.15 g per centimetre of length. A current of 8.2 A circulates in the wire in the direction shown.
 - i. Find the magnitude and direction of the magnetic field that will cause the loop to swing up to equilibrium when its plane makes an angle of 30° with the vertical plane.

Figure Q2

ii. What happens when the direction of the field is reversed, while its magnitude remains unchanged?

3) a. Describe Lenz's Law of induction.

- b. A rectangular coil measuring 30 cm by 40 cm is located inside a region of a spatially uniform magnetic field of 1.25 T, with the field perpendicular to the plane of the coil. The coil is pulled out at a steady rate of 2 cm/s travelling perpendicular to the field lines. The region of the field ends abruptly as shown in Figure Q3. Find the emf induced in this coil when it is
 - i. all inside the field;
 - ii. partly inside the field;
 - iii. all outside the field.
- c. A satellite, orbiting the earth at the equator at an altitude of 400 km, has an antenna that can be modelled as a 2-m-long rod. The antenna is oriented perpendicular to the earth's surface.
 Consider that at 400 km above the equator the earth's magnetic field is essentially horizontal and has a value of 8 × 10⁻⁵ T.
 - iv. Assuming the orbit is circular; determine the induced emf between the tips of the antenna. (Earth radius $R_{\epsilon} = 6.38 \times 10^6$ m)
- 4) a. State the formula for the capacitance of a parallel-plate capacitor, and discuss briefly how a change in each parameter value affects the capacitance.
 - b. Several 0.25 μ F capacitors are available. The voltage across each is not to exceed 600 V. You need to make a capacitor with capacitance 0.25 μ F to be connected across a potential difference of 900 V.
 - i. Show in a diagram how an equivalent capacitor with the desired properties can be obtained.
 - c. A 12.5 μF capacitor is connected to a power supply that keeps a constant potential difference of 24 V across the plates. A piece of material having a relative dielectric constant of 3.75 is placed between the plates, completely filling the space between them.
 - ii. By how much did the energy change during the insertion? Did it increase or decrease?
- 5) a. A student using an ammeter comments that two AC branch currents, of 3 A and 5 A respectively, combine together at a point to give a total current of 6.6 A. She states that this is a violation of Kirchhoff's current law. What is your opinion? Explain.
 - b. For circuit in Fig. Q5, given L = 150 mH, C = 1 μ F, and R = 400 Ω . It is found that voltage across the inductor L, $v_L(t)$ = 17 sin 2000t V.
 - i. Sketch the phasor diagram for the circuit using minimum calculations. (qualitative only)
 - ii. Based on the phasor diagram, or otherwise, calculate the currents through all the components.
 - iii. Construct the expression for e(t).
 - iv. What is the power factor of the circuit?

Figure Q5

- 6) a. i. What is the characteristic of a circuit at resonance?
 - ii. Describe a practical application of electrical resonance.
 - b. The circuit in figure Q5 is brought to resonance with all components remaining unchanged. The amplitude of the input voltage is fixed at 34 V.
 - iii. Calculate currents through all the components in this situation.
- 7) a. Describe the dot convention applied to inductor circuit diagrams.
 - b. A solenoid 25 cm long and with a cross-sectional area of 0.5 cm² contains 400 turns of wire and carries a current of 80 A. Calculate:
 - i the magnetic field in the solenoid;
 - ii. the energy density in the magnetic field if the solenoid is filled with air;
 - iii.the total energy contained in the coil's magnetic field (assume the field is uniform);
 - iv. the inductance of the solenoid.

$$(\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A})$$

- Sketch the characteristic curve and describe briefly the main characteristics of a semiconductor diode, based on its internal structure.
 - b. Describe how the zener stabiliser circuit reacts when:
 - i. there is a fluctuation of the source (input) voltage.
 - ii. there is a fluctuation of the output resistance (load).
 - c. Given e(t) = 12 sin 1000t V, E_1 = 6 V, and E_2 = 4 V, sketch the output wave form across the resistor $V_R(t)$. Mark the values on the axes clearly.

You may consider the diodes to be ideal.

