The Open University of Sri Lanka Diploma in Technology ECX 3232-Electrical Power Final Examination-2012/2013

Duration Three Hours

Date: 23rd of July 2013

Time: 0930-1230 hrs.

This paper contains Eight (8) questions. Answer any five (5). All questions carry equal marks. Graph papers will be available on your request.

- 1. a) Briefly describe the electricity tariff structure in Sri Lanka with emphasis on consumer types and different components of charges on them. [3 Marks]
 - b) A load variation through out a day of an 11 kV, three phase, 50 Hz industrial consumer is given in Table Q1A

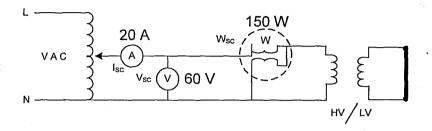
Table Q1A

Table VIII							
Time (hours)	0000-0900	0900-1500	1500-2100	2100-2400			
Total Load (kW)	100	300	600	100			
	Lighting Load only	Lighting Load +	Lighting Load+	Lighting Load only			
Load Description		200 kW induction motor load operating at 0.8 p.f.	200 kW induction motor load operating at 0.8 p.f. + 300 kW				
			induction motor load operating at 0.9 p.f.				

A distribution company offers a choice of two electricity tariffs for the above consumer and it is given in Table Q1B.

Table Q1B

Description of the Charge		Tariff-1	Tariff-2
Demand Charge (Rs/kVA)		750	600
Energy Charge (Rs/kWh)	Peak (1800-2100)	15.00	27.00
Energy Charge (Rs/RWII)	Off peak (other time)	15.00	12.50
Fixed Charge (Rs/Month)		2000	2000


Assuming a month of 30 working days

i) Calculate the load factor of the above consumer.

[2 Marks]

- ii) Determine the monthly electricity bills under Tariff-1 and Tariff-2 and hence advice and help the consumer to select the better tariff structure. [10 Marks]
- iii) Calculate the size of the capacitance/phase needed to be installed and switched:
 - a) Between 0900-1500 hrs
 - b) Between1500-2100 hrs to improve the power factor to be unity. (Assume that the capacitor banks are star connected) [5 Marks]

- 2. a) briefly explain the terms "Copper Loss" and "Iron Loss" of the power transformers and it variation with respect to load current. [2 Marks]
 - b) State the condition of the above losses when the transformer operating at its maximum efficiency. [2 Marks]
 - c) A 10 kVA, 500/250 V, single-phase transformer gave the following test results as indicated on the circuit diagram while performing a particular test.

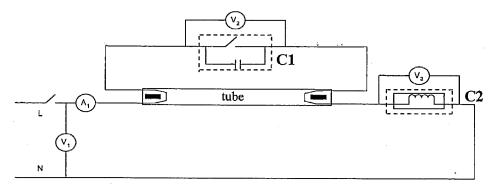
- i. Identify the test and explain why all the instruments are connected on high voltage side of the transformer? [2 Marks]
- ii. Compute the relevant parameters and draw the equivalent circuit of the transformer referred to LV side (neglect the parallel branch) [2 Marks]
- iii. It was observed that the transformer is operating at its maximum efficiency when it is loaded to 1.2 times its full-load capacity at unity power factor. Determine the full-load efficiency of the transformer when it is operating at 0.8 power factor.

[8 Marks]

iv. Also calculate the maximum efficiency of the transformer.

[4 Marks]

3. a) Briefly explain the torque-armature current characteristics of a D.C. shunt motor.

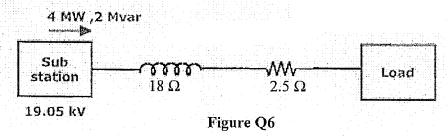

[4 Marks]

- b) A 200 Volts D.C. Shunt motor takes 27 A at rated voltage and runs at 800 r.p.m. Its field resistance and armature resistance are 100 Ω and 1 Ω respectively. If an additional resistance of 20 Ω is inserted in the armature circuit, compute the followings:
 - i. Motor speed and the line current in case load torque varies with the speed [8 Marks]
 - ii. Motor speed and the line current in case load torque varies as the square of the speed. [8 Marks]
- **4.** A 25 kW, 6 poles, 400V, 50 Hz, three phase induction motor operating at 0.85 power factor lagging has a full load slip of 0.04. If the torque lost in mechanical (friction & windage) losses is equivalent to 22 Nm, Compute:

a)	The mechanical torque available on the shaft	$(\tau_{\rm m})$	[3 Marks]
b)	Electrical torque available on the shaft	$(au_{ m e})$	[3 Marks]
c)	Rotor ohmic loss	(P_{cu})	[4 Marks]
d)	Air gap power	(P_{ag})	[4 Marks]
e)	Motor input current	(I_a)	[3 Marks]
f)	Motor input efficiency	(n)	[3 Marks]

Assume that the total stator loss is 900 watts.

5. A circuit diagram for the observation of operational characteristics of a fluorescent lamp is as shown below:



a) Identify the components C1 and C2 and explain their functions?

[4 Marks]

- b) If the observations on Volt meters and the Ammeter are V_1 =230V, V_2 =103V, V_3 =194 V and A_1 =0.55A, do the followings:
 - i. Draw the equivalent circuit and phasor diagram when fluorescent tube is ignited.

 [5 Marks]
 - ii. Calculate the power factor of the lamp circuit, power consumed by the tube and C₂
 [5 Marks]
- c) If 6μ F capacitor is connected in parallel to the main supply while maintaining V_1 at 230 volts, what would be the new power factor of the lamp circuit? [6 Marks]
- 6. A single phase 19.05 kV, 50 Hz transmission line feeds a load at several kilometers away from a substation as shown in figure Q6. The line has a resistance of 2.5 Ω and a reactance of 18 Ω . Instruments installed at the substation, indicate that the active and reactive power flow to the line are 4 MW and 2 MVAr respectively.

- a) Find apparent power delivered to the line, line current and its phase angle [reference to the substation voltage] [5 Marks]
- b) Active power and reactive power dissipated in the line

[5'Marks]

c) Active and reactive power absorbed by the load

[5 Marks]

d) Voltage and power factor at the load end

[5 Marks]

- 7. a) Briefly explain why low voltages are not suitable for electrical power transmission.

 [5 Marks]
 - b) Why the ring main systems are better when compared with radial systems in electrical power distribution? [5 Marks]
 - c) Semi enclosed ceramic fuses and MCBs (miniature circuit breaker) are protective devices used in domestic electrical installation, however their Time-Current characteristics are different. Explain? [5 Marks]
 - d) Explain the term "Time of day" used in in electricity tariff offered by Ceylon Electricity Board.

 [5 Marks]
- 8. a) i. Define non-linear load and linear load? Give three examples for each
 ii What are the problems associated in power systems owing to harmonics? [3 Marks]
 - b) An e.m.f given by $e = 110\sin\omega t + 40\sin\left(3\omega t \frac{\pi}{6}\right) + 10\sin\left(5\omega t \frac{\pi}{3}\right)$ Volts is applied to a series circuit having a resistance of 110 Ω , an inductance of 35.6 mH and a capacitance of 15 μ F. Derive an expression for the current in the circuit considering ω as 314 rad/sec. Also compute:

i.	r.m.s value of the current.	[8 Marks]
ii.	Power dissipated in the circuit.	[2 Marks]
iii.	Overall power factor.	[2 Marks]
iv.	Total harmonic distortion (THD)	[2 Marks]