The Open University of Sri Lanka
Department of Electrical and Computer Engineering

ECX3210 - Electro - Techniques

Final Examination 2012/2013

Closed Book Test

Date: 28th July 2013

Time: 13.30-16.30

Answer any 5 questions. All questions carry equal marks. Show all relevant steps of the calculations.

- 1.
- a) Describe Gauss's Theorem.
- b) Two identical point charges, fixed in place, attract each other with an electrostatic force of 0.1N when their separation is 50 cm. The charges are then connected by a thin conducting wire. When the wire is removed, the charges repel each other with an electrostatic force of 0.036 N. Find the initial values of the charges.
- c) A non-conducting solid sphere of radius a, with uniform volume charge density is concentric with a conducting shell of inner radius b=2a and outer radius c=2.5a, as shown in Fig Q1. If the total charge of the inner sphere is Q and the total charge of the outer shell is -q (with |Q|>|q|) sketch the variation of the magnitude of the Electric field in the Radial direction, starting from the centre of the sphere for range 0 < r < 3a.

Figure Q1

- 2.
- Describe the classification of different materials according to their permeability and dipole orientation. State one example each for each type above.
- b) Describe the magnetisation and demagnetisation process with the help of a Hysteresis loop. How does this characteristic decide the suitability of materials as a core for electro magnets? Explain.
- c) A concentrated coil of 500 turns is of 10 cm diameter. A 10 A current flows through it. Determine the magnetic field caused by this coil (i) at the centre of the coil; (ii) at a point on the axis 8 cm from the centre.
- 3.
- a) State the basic characteristic of a Capacitor.
- b) A parallel plate capacitor with a capacitance of 1 μ F is known to have Mylar (ϵ_r = 2.5) filling the space between its plates. This capacitor is connected to an ideal dc source of 10 V. Calculate:
 - i) The charge accumulated
 - ii) Energy stored

Now the distance between the plates is doubled (d' = 2d) without changing any other characteristics of the capacitor, while still connected to the source. Calculate:

- iii) New Voltage between the plates
- iv) New charge accumulated
- v) New energy stored.

Finally, the capacitor is disconnected from the source, and thereafter the plates brought back to the original separation (d'' = d). Now calculate:

- vi) New Voltage between the plates
- vii) New charge accumulated
- viii) New energy stored.

4.

- Describe the condition that determines a Series, and a Parallel connection in circuit respectively.
- b) When connected to an ideal dc power source in parallel, two resistors R_A and R_B dissipate five times the power compared to their series combination. Find the possible values for R_B , when R_A is known to be 100 Ω .
- In the circuit of Fig Q4 R1 = $2 k\Omega$, R2 = $4 k\Omega$, R3 = $6 k\Omega$, and I3 = 6 mA. The potential difference between points A and B is found to be 78 V. A 'Box' containing circuit element(s) is also in the circuit.
 - i) Is the 'Box' absorbing from or providing energy to the circuit? Explain.
 - ii) How much is the above rate?

Figure Q4

5.

- a) Describe different types of power that you encounter in an ac circuit. What is the relationship between these types? Explain. What is the significance of the power factor?
- b) Calculate the following for the periodic wave shown in Fig Q5b

- ii) Rectified average
- iii) RMS value
- iv) Form factor

For the circuit in Fig Q5c, it was measured that $|R1| = 300 \Omega$, $|R2| = 500 \Omega$, $|XC1| = 400 \Omega$, $|XC2| = 300 \Omega$, and $|XL| = 300 \Omega$. Taking the Current through R1 as the base reference draw a suitable phasor diagram for this circuit to scale, showing all relevant currents and voltages, including V_{AB} .

6.

- a) State the characteristic of a circuit at resonance.
- b) For the circuit in fig Q6, e is known to be of simple sinusoidal wave form. Derive a formula in terms of R, L and C to calculate the resonance frequency f_o for this circuit.
- c) Calculate the value of the resonance frequency when the values of the components are R = 300 Ω , L = 100 mH, and C = 1 μ F respectively.

d) Given $e = 34 \sin \omega t V$, calculate the respective currents through the Capacitor and the Inductor at resonance.

Figure Q6

7.

- a) Explain the dot notation representation of coupled inductors.
- b) Describe, with the help of a simple sketch, the operating principles of a simple dc motor.
- c) A 50 μ A meter movement, with an internal resistance of 2 k Ω , is to be used to construct a multi-range meter to measure
 - i) a range of 500 mA;
 - ii) a range of 0-10 V

Indicate the suitable circuit for each task, including calculations.

8.

- a) Describe briefly the behaviour of a semiconductor diode, based on the characteristic curve.
- b) Describe the functioning of
 - i) the Clipper circuit

and

ii) the Clamper circuit

including the circuits and output waveforms.

c) Describe 3 special diodes, specifying their special characteristics and behaviour. Also include relevant circuits where appropriate.