

THE OPEN UNIVERSITY OF SRI LANKA
Diploma In Technology (Civil) / Bachelor of Technology - Level 3
CEX 3231 - Structural Analysis & Design 1

_Final_Examination - 2012/2013___

Time Allowed 3 hours

Date: 14th August 2013

Time 9.30p.m. - 12.30 p.m.

Answer five questions selecting not less than two questions from section A and Section B. Please write answers clearly showing any derivations required and stating necessary assumptions

SECTION A

1. a). Sketch the supports used in structures and mark their appropriate reactions.

(3 Marks)

b). A structure is loaded as shown in Figure Q1 that is supported with a pin support at U1.

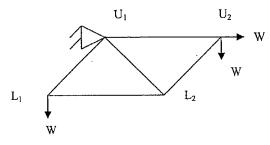


Figure Q1

Member Lengths L_1L_2 , $U_1U_2 = l$ L_1U_1 , U_1L_2 , $L_2U_2 = 0.71 l$

i. Show that the structure given in Figure Q1 is not in equilibrium

- (2 Marks)
- ii. The truss shown in Figure Q1 is now supported at L2 with a roller support (restricted on Vertical direction). Show that the new structure is statically determinate. (2 Marks)
- iii. Analyze the truss shown on figure Q1 after the modification mentioned in part ii using an analytical method and give the member forces in terms of W. Also mention whether member forces are tension or compression. (7 Marks)
- iv. Justify your answers in part iii with Graphical method.

(6 Marks)

2. a). List down three methods used to determine the deflection of trusses. Discuss their limitations.

(4 Marks)

b). Find the defection of point U₂ of the truss given in Figure Q2, in terms of W, A, E. (Assume AE value is same for all the members)

(14 Marks)

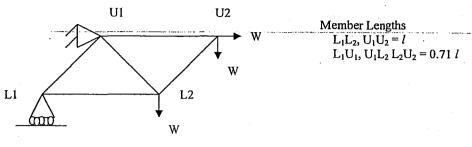
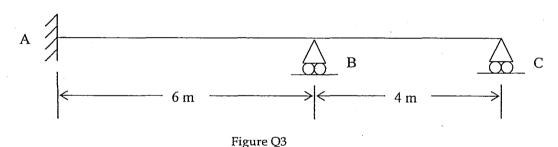



Figure Q2

c). Explain why strain energy method cannot be used to find deflection of point L2.

(2 Marks)

3.

a). Show that statically indeterminacy of the beam given in Figure Q3 is 2.

(2 Marks)

- b). Assume there are two hinges at mid spans of each span AB and BC and draw influence lines for
 - a). Reaction at B
 - b). End moment at A
 - c). Bending moment at B

(10 Marks)

- c). Following loads (given in parts i and ii) are moving along the beam. Find the maximum Bending Moment at support A and also indicate the corresponding positions of the loadings.
 - i. Uniformly distribute load of intensity 5 kN/m of a length more than 10 m.
 - ii. Two tires of a bicycle which are 2m apart and front wheel applies 5 kN and rear wheel applies 10 kN.

(8 Marks)

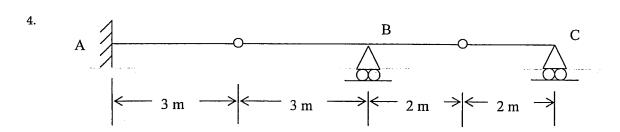


Figure Q4

The beam given in Figure Q4 is loaded with dead load (G_k) of 10 kN/m and imposed load (Q_k) 5 kN/m. Following load cases are identified as critical load cases.

Case 1 - Maximum load at both spans.

Case 2 - Maximum load at span AB and minimum load at span BC

a). Draw the Bending moment diagram for Load case 1

(8 Marks)

b). Draw the Bending moment diagram for Load case 2

(8 Marks)

c). Draw the Bending moment envelope for Load case 1 and Load case 2.

(4 Marks)

Maximum Load = $1.4 G_k + 1.6 Q_k$ and Minimum Loading = $1.0 G_k$

SECTION B

Data - For Q5 and Q6

Properties	50 x 50 x 7 EA	70 x 70 x 8 EA
Area of Section	7.41 cm ²	10.6 cm ²
Distance to centre of gravity	1.52 cm	2.01 cm
Second moment of area	16.3 cm ⁴ xx and yy axes	47.5 cm ⁴ xx and yy axes
Radius of gyration		
xx axis , yy axis	1.48 cm	2.11 cm
vv axis	0.96 cm	1.36 cm

- a).Define the two terms effective sectional area and gross sectional area of a single angle member used as a member of steel roof truss
 - b). Check the suitability of a $70 \times 70 \times 8$ equal angle member which is subjected to 75 kN tension load. Assume that the member is connected with 20 mm bolts at both ends. (8 Marks)
 - c). If 4 kNm sagging bending moment is applied to the member other than the applied tensile force check the suitability of the given member for this loading condition. (8 Marks)

6. a). Define the terms effective length, radius of gyration and slenderness ratio used in steel design. Explain why members should be rejected if calculated slenderness ratio is more than allowable maximum—slenderness ratio.

(6 Marks)

- b). A compression member of length 2.5 m is proposed to design with
 - i). Single angle member 70 x 70 x 8 EA
 - ii). Back to back double angle member of 50 x 50 x 7 EA,

both the members are connected with two M20 bolts in both ends.

Find the capacity of each selection.

The radius of gyration of double angle member is given by

$$r_{xx}$$
 (double) = r_{xx}
 r_{yy}^2 (double) = $r_{yy}^2 + (c_y + t/2)^2$

Where r_{xx} and r_{yy} have their standard meanings and thickness of gusset plate is taken as 12 mm. (14 Marks)

7. A simply supported beam of effective span 4m is used to support the concrete slab of 150 mm in thickness and following details are provided.

Spacing of the beams = 1.0 mDead load from the finishers = 1.0 kN/m^2 Density of Concrete = 24 kN/m^3 Imposed load from the people = 1.5 kN/m^2 Imposed load from the furniture = 0.5 kN/m^2

a). Find out the design load applied on the beam. (Take the self weight of the beam as 15 % of total calculated design load).

(4 Marks)

b). If a T beam 100 x 200 is selected for this simply supported beam, check the suitability of the selection. (8 Marks)

From the tabulated properties of 100 x 200 T beam

Depth of Section, D = 100 mm, Width of the section B = 200 mm Flange Thickness, T = 12 mm, web thickness, t = 8 mm Radius of gyration, r_x = 14.6 cm and r_y = 3.77 cm Sectional Area = 31.77 cm² Distance to the center of gravity Cy = 82.7 mm Elastic Modulus, Z_{xx} = 80.1 cm³, Z_{yy} = 22.2 cm³

- c) The beam is connected to a plate through its flange with two symmetrical lines of M 20 bolts.
 - i. Calculate the number of bolts required for the joint.
 - ii. Draw the arrangement of bolts considering spacing and edge/end distances.

(8 Marks)

The allowable strengths are:

the allowable stress in bolts in clearance holes, in shear $= 80 \text{ N/mm}^2$ the allowable stress in bolts in clearance holes, in bearing $= 250 \text{ N/mm}^2$

- the allowable stress in bolts in clearance holes, in axial tension = 120 N/mm² the edge distance of 22 mm diameter holes = 30 mm minimum spacing between center of bolts = 2.5 x Nominal Diameter
- 8. a). Explain following terms used in wind load calculation.
 - i). Design wind speed
 - ii). Post Disaster Structures
 - iii). Windward slope and Leeward slope

(2x 3 = 6 Marks)

b). Derive the formula for Euler buckling load of cantilever strut with first principles.

(10 Marks)

c). A cantilever strut of effective length 4 m is used as a column and which is loaded only with axial compression load.

Dimension of column – 300 mm x 400 mm Elastic modulus of column material – $6.9 \times 10^8 \, \text{N/m}^2$ Compressive strength of column material – $5 \, \text{N/mm}^2$

Check whether the member is safe under these conditions

(4 Marks)

DATA SHEETS

TABLE 19. ALLOWABLE STRESS P, IN AXIAL TENSION

Grade	Thickness	P_{t}	
	mm	N/mm²	
43	≤ 40	170	
	over 40 but ≤ 100	155	
50	≤ 63	215	
	over 63 but ≤ 100	200	
55	≤ 25	265	
	43 50	mm 43 ≤ 40 over 40 but ≤ 100 50 ≤ 63 over 63 but ≤ 100	

TENSILE STRESSES FOR ANGLES, TEES AND CHANNELS

42. a. Eccentric connections. When eccentricity of loading occurs in connections of angles and tees in tension, the net areas to be used in computing the mean tensile stress shall be as given by the following rules:

1. Single angles connected through one leg, channel sections connected through the web and T-sections connected only through the flange. To the net sectional area of the connected leg, add the sectional area of the unconnected leg multiplied by:

$$\frac{3a_1}{3a_1+a_2}$$

where a_1 = the net sectional area of the connected leg.

 a_1 = the sectional area of the unconnected leg.

Where lug angles are used, the net sectional area of the whole of the angle member shall be taken.

2. Apair of angles, channels or T-sections, connected together along their length, when attached to the same side of a gusset for the equivalent by only one leg of each component:

in contact or separated, by a distance not exceeding the aggregate thickness of the connected parts, with solid packing pieces.

(ii) connected by bolts or welding as specified in Subclauses 51e or 54g so that the maximum ratio of slenderness of each member between connections is not greater than 80.

TABLE 18. ANGLE STRUTS

Connection	Sections and axes	Stenderness ratios (see notes 1 and 2)
	b b b b	$vv \ axis: 0.85L_{w}/r_{w} \ but \ge 0.7L_{w}/r_{w} + 15$ $aa \ axis: 1.0L_{ab}/r_{aa} \ but \ge 0.7L_{ab}/r_{aa} + 30$ $bb \ axis: 0.85L_{bb}/r_{bb} \ but \ge 0.7L_{bb}/r_{bb} + 30$
(See note 3)		vv axis: $1.0L_{b}/r_{\infty}$ but $\ge 0.7L_{b}/r_{\infty} + 15$ aa axis: $1.0L_{b}/r_{bb}$ but $\ge 0.7L_{a}/r_{aa} + 30$ bb axis: $1.0L_{bb}/r_{bb}$ but $\ge 0.7L_{bb}/r_{bb} + 30$ (See note 3)
(See note 4)	x x y x	$xx \ axis: 0.85 L_{xx}/r_{xx} \ but \ge 0.7 L_{xx}/r_{xx} + 30$ $yy \ axis: 1.0 L_{yy}/r_{yy} + 10$
(Scc note 4)	y y y y	$xx axis: 1.0L_{xx}/r_{xx} \text{ but } \ge 0.7L_{xx}/r_{xx} + 30$ $yy axis: 0.85L_{yy}/r_{yy} \text{ but } \ge 0.7L_{yy}/r_{yy} + 10$

NOTE 1. The length Listaken between the intersections of the centroidal axes or the intersections of the setting out lines of the bolts, irrespective of whether the strut is connected to a gusset or directly to another member.
 NOTE 2. Intermediate lateral restraints reduce the value of L for buckling about the relevant axes. For single angle members, L w is taken between lateral restraints perpendicular to either as or bb.

NOTE 3. For single angles connected by one bolt, the allowable stress is also reduced to 80 per cent of that for an axially loaded member.

NOTE 4. Double angles are interconnected back-to-back to satisfy Clause 37.

	P _c (N	/mm*)	for grad	le 43 sto	el ⊋****** = [44]	5	6	7.	iji. La va	
rii. Mili	170	169	169						8::::	9.00
	165	164	164	168 163	168. 163.	167	167 162	166	166 # 160 #	165
	159 154	159 154	158-	158 153	157 153	₹ 157: * 152	156 152	156 151	155 151	155 450
									5701/4	Mary Days
	150 144	149 143 5	149	1481	148	147 139	146	146	145	144 136
	135. 123.	134 H	133 120	131	/130 118	129 116 -	128 115	127	126	124
	野菜園							114	112 :	
	109 95	108 94	107 <u>.</u> .93	105 191	90	102.: 89	101	100 86	98 85	97 84
	82 71	81.4 70	480 ³ **	79 68	78 67	77 66	_75 65	274	73	72
14	575.00						1535	64	63	62
	62 54	.61 .53	60 7'52	59 51	58 51	57 50	- 57 49	56 49	.55 48	54 ₈ ;
	47 41	46. 41	46 40	45 40	45 39	44 39	43	43	42	42 ,
					The state of		38	38	38	37*
	37 33	: 36∠. 32	360 32	35 32	35 -31	35 31	34	34 30	33	33 30
	29 26	29 26	29 26	28 26	:28 ::25	28	28	27	27	27
			製造		1.00	- 2 5	25	25	24	24
	24 4 22	.24 = 1 22	-24 - 21	. 23 -21	23	23 21	23. 21	22 20	22 20	22 20
	20 18	20 18	20 18	19	- 19	19	19	. 19	19 -	
1 1		10 T	735 T	. 18	18	3 1.8 3 (17	17	17	17
	17 16	17 15	17 15	≟16 ≟15	16 15	16 15	16 15	16 15	16 15	. l 6 . l 5
	11 8	(11.4 8	11	11	11	Su !	10	10	10	- 10
agast eini	As gray	255924	377. 排	8	8	8	8	8	8	
E E 2	ntermedi	ate value	may be ο	btained b	y lincar in	terpolatio	n.	70	5	of Grange 20 "" Lone
	or mater	ial over	40 mm th	ick refer	to subcli	terpolatio ause 30 <i>a</i> ,		- 3	N.	14.,#13 11.,#13 12.50

TABLE 2. ALLOWABLE STRESS Dic OR Doc IN BENDING (See also Glauses 19 and 20 and Tables 9 and 3)

Form	G.	Thickness	PACOSIT-
Sections bars, plates wide flats and hot rolled hollowsections. Compound beams composed of	43	** ≥30 **340*but≥≥100	180 S 165
rolled sections plated, with thickness of plate. Double channel sections forming a	50	≤63 >65'6uc≤100	250 215 2
symmetrical I-section which acts as amantegral unit.	55 5	≦25	280
∷Plate griders with single or ≐in ültiple webs	43	≥40°±" >40°bin ≤ 100°	170 F
	50≓ 	≤63 >63 6µ1≤ 100	215 200
The confermation of the co	59. 59.	≤25 + fre: #	265
Slabbases		Allisteels	185

BS 449 Part

TABLE 3 a ALLOWABLE STRESS pic IN BENDING (N/mm²) FOR CASE A

OF CLAUSE 19a(2) FOR GRADE 43 STEEL

/ry	· 5	10	:15	₿ 20 🖫	25	30 🗒	35	40 %	45	50
	- 180	180	180	180	180	180	180	180	180	180
40 45	180	180	180	180	180	180.3	180	180	180	180
43 50	180_	180	180	180	180	180	180	180	180	180
55 55	180	180	180	178	176	175	174	174	173	173
60	180	180	176	172	170	169	168	167	167	166
41 000	100000000000000000000000000000000000000	180	172	167	164	163	162	161	160	160
65	180	177	167	162 . *	159	157	2156	155	154	154
70	180	174	163	157	154	. 151器	150	149	148	147
75 80	180	171	159	153	148	146	144	143	142	141
85	180	168	156	148	143	140	138	137	136	:135
100	180	165	152	144	139	135	133	131	130	129
90 95	180	162	148	140	139	130	127	125	124	123
00 - 53	180 -180	160	145	136	129	125	122	119	118	117
05	180	157	142	132	125	120	116	114	112	111
10	180	- 155	139	128	120	115	iii	108	106	105
15	178	152	136	124	116	110	106	103	101	99
15 20	177	150	133	120	112	106	100	103	96	95
30	174	146	- 127	113	104	97	94	91	- 89	88
40 -	171	142	121	107	97.	92	88	85	83	81
50.	168	138	116	100	92	87	82	79	77	75
60	166	134	1111	96	88	82	77.	74	72	70
70	163	130	106	90	84	, 62 77	73	69	67	65
80	161	126	102	89	80	73	69	65::	63	60
90	158	123	97	85	76	70	65	61.	59	56
200	156	119	95	82	73	66	62	58	55	53
10-	154	116	92	79	70	63	-58	55	- 52	50
220	151	113	90	77-	67	**61	56	52	49	47
30	149	110	87	74	65	58	53	49	47	44
240	147	107	85	72	62	56	51	47	44	42
250	145	104	83	69	60	53	48	45	42	40
60	143	10L	80	67	58	51	46	43	40	38
70	141	98	78	65	56	49	-45	41	38	36
280	139	96	76	63	54	48	43	39	37	35
290	137	94	75	61	52	46	41	38	35	33
300	135	93	- 73.5	60	51	44	·(4()	36	34	32