THE OPEN UNIVERSITY OF SRI LANKA B. Sc. & B. Ed. DEGREE/STAND ALONE COURSES IN SCIENCE 2009/2010- Level 5 ASSIGNMENT TEST I (NBT) CHU3127/CHE5127 - Organometallic Chemistry

DURATION: 1.5 hours

DATE: 15th September 2009 TIME: 4.00 p.m. to 5.30 p.m.

ANSWER ALL QUESTIONS

Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted and 1/5th of the mark will be deducted for each incorrect answer.

· ·			•
PART A (60 marks)	•		
1. Consider the following orga	anic ligands,		·
(i) vinyl	(ii) $=CH_2$	(iii) ≡CH	
The possible monohapto li	igands are	•	•
1) (i) and (ii) only.	2) (i) and (iii)	only.	٠
3) (ii) and (iii) only.	4) (i), (ii) and	(iii).	
2. The possible coordination		llyl group (C₃H;	₅ -) is/are
1) η^1 only.	2) η^3 only.		
3) η^1 and η^3 only.	4) η^2 only.		
 The IUPAC name of [(η⁵-C)] (η⁵-cyclopentadienyl)di dichloro(η⁵-cyclopentadienyl)di (η⁵-cyclopentadienyl)di dichloro(η²-ethene)(η⁵- 	chloro(η²-ethene dienyl)(η²-ethene chloro(η²-ethene	e)ferrous(III) e)iron e)iron(III)	
4. What is the Valence Electr (Atomic number of Fe is 2) of Fe in [(η ⁵ -C	$C_5H_5)$ FeCl ₂ (η^2 -C ₂ H ₄)]?
1) 16 2) 17 3	*		,
5. The strongest σ-donor liga 1) NMe ₃ 2) NH ₃	-	lowing ligands 4) NO	is ·
6. According to the ionic mod	el, which one of	the following is	a 6e-donor ligand?
1) η^7 -C ₇ H ₇ ⁻ 2) η^5 -Cp ⁻	3) cyclopent	adiene (C ₅ H ₆)	4) 1,3-cyclohexadiene (C ₆ H ₈)

7. The coordination number of Fe in $[(\eta^5-C_5H_5)FeCl_2(\eta^2-C_2H_4)]$ is

ŞΛτ	T V to to	1	1:								
0. 141	L_3X typ	e ngan -C-H-	1 18 2) ~6 C	1 TT	23 3	A		-			
	17 1	-C7117	2) η ⁶ -C	6H6	3) ŋ³.	$\cdot C_3H_3^-$	4	ŀ) η³-C₅I	$\mathrm{H_5}^-$		
9. WI	hat is tru	e about	PF ₃ ?								
1) It stabil	ises the	metal cen	tres in	higher	oxidation	n state	e e			
۷.) It is a g	00d G-0	lonor.			, 122			,		
3]) It is a g	ood π-a	cceptor.								
4)) It is a g	ood o-d	onor and a	good	π-acce _l	otor.					
10. A	ccording	to the i	onic mode	l the	d ⁿ alaat	<u>.</u>	••			•	•
ire	on in [(η	5-C ₅ H ₅)	FeCl ₂ (η ² -C	'.Н.Л	a etect	LOU COUL	igura:	tion and	the oxi	dation	number of
	1)	$d^{8}, +2$	<u> </u>	2) d^{6} .	+2	, namoei	oi re	18 26) re	spective	ely are	
	3)	d^{5} , +3	2	-, - , 4) d⁵,	+2						
11. Cc	onsider th	e follov	ving stater	nents .	about [(η ³ -C ₃ H ₅)	NiCl(CO)] (G	roup nu	mber o	f Ni is 10),
r	. ,	- .	HILOHHI	-риаце	41 2COIII	CITY		,	•		1.11.10 10/,
	(iii) It	is a 16e	t give geor	nemc 1	al isome	ers.					
Th	e correc	t statem	ent/s is/are	ı. 2							
	1) (iii)			_	2) (i)	& (iii) oı	าไซ				
	3) (ii) &	k (iii) o	nly.		4) (i),	(ii) & (ii	ii).				
12. Co	nsider th	e fallou	ring states	4	1 .						
	(i) In Sc	hrock c	ring staten arbenes, th	ienis a le carl	lbout ca	rbenes.	, ,				
((ii) Carb	ene liga	and is a 3e-	donor	- -	DOU 18 NO	cieop	nilic.	-		
((iii) Carb	ene liga	and is a <i>mo</i>	nohaj	oto ligar	nd.					•
					_						
	1) (i) &	rect sta	itement/s i	s/are	O) (***)						
	1) (i) & 3) (ii) &	(iii) or	ıy. ılv		2) (iii)) only. (ii) & (iii					
			•								•
13. Wh	ich one c	f the fo	llowing lig	gands	is not is	oelectro	n ic wi	th ethen	e.		
	1) CN	-	2) C≅O	3	N_2	4) 1					
14. Whi	ich one o	f the fo	llowing et	ıtama.		44 1				*	
	1) Hete	ro-aton	llowing sta	thed to	the car	ot true ab	out Fi	scher c	arbenes	?	
	2) Cart	ene car	bon contai	ins a -	δ charoe	.					•
	<i>3</i>) Cart	ene car	bon is reac	lily at	tacked l	 Dy nucleo	ohiles				
	Meta	ıl is in a	low oxida	ition s	tate.	-	1	•			

- 15. What is not true about the dinitrogen ligand?1) It can act as a dihapto ligand.

 - 2) It can act as a terminal ligand.3) It can act as a 4e-donor.

 - 4) It is a better σ-donor than CO.

- 16. Consider the following statements,
 - (i) N_2 is a weaker π -acceptor than PF₃.
 - (ii) CO is a stronger o-donor than CN.
 - (iii) NO^+ is a stronger π -acceptor than NO.

The correct statement/s is/are

- 1) (i) & (iii) only.
- 2) (i) & (ii) only.
- 3) (ii) & (iii) only.
- 4) (i) (ii) & (iii) only.
- 17. According to the **Ionic Model**, what is the **oxidation number** of Co in $[CoCl(\eta^2-C_2H_4)(\eta^5-C_5H_5)(CO)]$ (Group number of Co is 9)?
 - 1) 1
- 2) 2
- 3) 3
- 4) 4
- 18. Consider the following statements.
 - (i) CO is a good π -acceptor ligand.
 - (ii) The back bonding increases the M-CO bond strength.
 - (iii) CO stabilises metal centres in lower oxidation states.

The correct statement/s is/are

- 1) (i) only.
- 2) (i) & (ii) only.
- 3) (ii) & (iii) only.
- 4) (i), (ii) & (iii).
- 19. Consider the Pt(II) complex [Pt₂Cl₂(μ-Cl)₂(PPh₃)₂]. Which one of the following statements is **not true** about the above complex? (Group number of Pt is 10)
 - 1) Each platinum centre has 16 valence electrons.
 - 2) It is not a symmetrical molecule.
 - 3) There is no Pt-Pt bond.
 - 4) Each platinum centre has one terminal chloride ligand.
- 20. In metal carbonyls, when back donation is increased
 - 1) the M-CO bond order is decreased.
 - 2) the bond strength of C≡O is increased.
 - the ν(CO) value is decreased.
 - 4) the M-CO bond length is increased.

2 3

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME 2009/2010 CHU3127/CHE5127 – ORGANOMETALLIC CHEMISTRY-LEVEL 5 ASSIGNMENT TEST I - MCQ TEST

MCQ ANSWI	ER SHEET: Ma	ark a cro	ss (X) o	ver the most	suitable	answer.		
Name:			**********					
Reg. No.	·							
	Marks			FOR EXA	MINER	'S USE		Marks
Part A				Unanswere				
Part B				Correct An	swers			
Total %				Wrong An	swers			
-				Total			<u></u>	
· .			·					
1. 1	2 3 4	2.	1 2	3 4	3.	1 2	3 4	
4. 1	2 3 4	5.	1 2	2 3 4	6.	1 2	3 4	
7. 1	2 3 4	8.	1 2	2 3 4	9.	1 2	3 4	
10 [1	2 3 4	11.	1 1	2 3 4	12.	1 2	3 4	7

4

3

3

2

14.

17.

20.

1

3

13.

16.

19.

15.

18.

Part B (40 marks)

Answer all the questions in the space provided. Attached sheets will not be graded.

1. (a) Give IUPAC names for the following complexes.

i. [RuCl(η^2 -C₂H₄)(η^5 -C₅H₅)(CO)]

ii. [RhF(η^3 -C₃H₅) (η^1 -CH=CH₂)(η^2 -C₄H₄)]

(b) Draw the structures of the following complexes.

i. $[RhF(\eta^3-C_3H_5) (\eta^1-CH=CH_2)(\eta^2-C_4H_4)]$

ii. Chloro(η⁶-cycloheptatriene)(η²-ethene)(methyl)tungsten

(c) (i) Determine the VEC of Rh in [RhF(η^3 -C₃H₅) (η^1 -CH=CH₂)(η^2 -C₄H₄)] using ionic model. (Indicate your break down or the steps used; Group number of Rh is 9)

(ii) Determine the VEC of Ru in [RuCl(η^2 -C₂H₄)(η^5 -C₅H₅)(CO)] using covalent model. (Indicate your break down or the steps used; Group number of Ru is 8)

(d) What is meant by the "18e-rule"?

(a) Determine the coordination number of Ru in [RuCl(η²-C₂H₄)(η⁵-C₅H₅)(CO)].
(b) Draw the orbital diagram between a metal and a carbene ligand, indicating the σ and π-overlap.
(c) (i) Arrange CF₃CN, MeCN, CS and CO in the order of increasing π-acceptability.
(ii) Arrange PH₃, PCl₃, PF₃ and PMe₃ in the order of increasing σ-donor ability.
(d) (i) Draw the structures of the three isomers of [Fe(CO)₂(PPh₃)₃] with the trigonal bipyramidal geometry.

(ii) Draw the structures of the three isomers of [Fe(CO)₂(PPh₃)₃] with the tetragonal pyramidal geometry.

අතා විවෘත ව්යවද්ධයේ ර පාරද්ශීය ලබාස්ථානය විගාග

0 8 **0CT** 2009

THE OPEN UNIVERSITY OF STA

B.Sc. & B. Ed. DEGREE / STAND ALONG COURSE IN SCIENCE - LEVEL 5 ASSIGNMENT TEST II (NBT) 2009/2010

CHU 3127/CHE 5127 - Organometallic Chemistry

08th October 2009

Duration: 1 1/2 hours

4.00 - 5.30 pm.

ANSWER ALL QUESTIONS

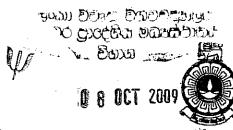
Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the **given answer script**. Any answer with more than one cross will not be counted and 1/5th of the mark will be deducted for each incorrect answer.

PART A (60 marks)

- 1. Consider the following statements regarding reductive elimination.
 - (i) Reductive elimination is facile if the metal centre is positively charged.
 - (ii) Coordinatively saturated compounds prefer to undergo reductive elimination.
 - (iii) Coordination number of the metal is reduced by two units during reductive elimination.

 The correct statements are
 - 1) (i) & (ii) only.
- 2) (i) & (iii) only.
- 3) (ii) & (iii) only.
- 4) (i), (ii) & (iii).
- 2. Consider the following statements about [Fe(CO)₅],
 - (i) It shows the trigonal bipyramidal geometry in the solid state.
 - (ii) It shows two carbonyl bands in its IR spectrum.
 - (iii) It can be prepared by reacting zerovalent Fe with CO at high temperatures and pressures.

The correct statements are :


- 1) (i) & (ii) only.
- 2) (i) & (iii) only.
- 3) (ii) & (iii) only.
- 4) (i), (ii) & (iii).
- 3. Pick the incorrect statement regarding oxidative addition reaction?
 - 1) Coordinatively saturated metal centres can undergo oxidative addition reaction.
 - 2) In most cases, coordination number of the metal is increased by 2 units.
 - 3) Oxidation number of the metal is always increased by 2 units.
 - 4) Oxidative addition is facile if the metal centre is coordinatively unsaturated.
- 4. Which one is an example for 2e-oxidative-addition reaction?
 - 1) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
 - 2) $[Co_2(CO)_8] + H_2 \rightarrow 2 [HCo(CO)_4]$
 - 3) $2 [Co(CN)_5]^{3-} + MeI \rightarrow [MeCo(CN)_5]^{3-} + [CoI(CN)_5]^{3-}$
 - 4) $[Pd(PPh_3)_4] + PhI \rightarrow [Pd(Ph)(I)(PPh_3)_2] + 2 PPh_3$
- 5. δ-Agostic (delta agnostic) interaction could be seen in
 - 1) $[MeMn(CO)_5]$
 - 2) $[(OC)_3Pd\{P(OPh)_3\}]$
 - 3) [RhI(Me)(PPh₃)(CO)]
 - 4) [Ni(PEt₃)₃]

6. How many IR bands does <i>tran</i> 1) 1 2) 2	as-[Cr(CO) ₄ (PPh ₃) ₂] show? 3) 3 4) 4
(-) - SOOMS ME DEIMIENT	a bidentate ligand). reacting [W(CO) ₆] with dppe. al geometry. bonyl band in its IR spectrum.
 8. Nucleophilic attack on a coordinate 1) the metal is in a lower 2) the metal is coordinate 3) the metal is coordinate 4) the metal carries a negative 	oxidation state /ely unsaturated.
9. Which metal carbonyl does not 1) [Rh ₄ (CO) ₁₂] 2) 3) [Fe ₃ (CO) ₁₂] 4)	
10. Which one is the most likely su 1) [Ni(CO) ₄] = [Ni(2) [Ni(PEt ₂) ₂] + PhI	bstitution reaction? CO) ₃] + CO [Ni(Ph)(I)(PEt ₃) ₂] + PEt ₃
 11. Consider the following statement (i) CN is a weaker σ-done (ii) PMe₃ is a better σ-done (iii) CS is a better π-acceptor The correct statement/s is/are 1) (ii) only. 3) (i) & (ii) only. 	or than CO. or than DDb
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
 Which statement is not true about The coordination number of in The oxidation number of iron The IUPAC name is tetracarbed The v(CO) of [Fe(CO)₄]²⁻ is I 	Fe(CO) ₄] ²⁻ ? ron is 4. is -2.
14. Consider the following statements, (i) [HCo(CO) ₄] is a H ⁺ donor. (ii) [HCo(CO) ₄ (PPh ₂)] is a str	onger acid than [HCo(CO) ₄]. tive proton chemical shift (in ppm) S). 2) (i) & (iii) only.
,	4) (i), (ii) & (iii).

	· ,				
/					•
•	15. What would be the most likely CO : 1) 2005 2) 1900		cy of [Mo(CO) ₆]?	•	
	16. Consider the following statements a	bout cycloheptatrie	ene (C_7H_8),		•
	(i) It can act as L ₃ type ligand.				
	(ii) It can act as a dihapto or tel		****		
	(iii) The coordination number o	f Mo in [Mo(η"–C	₇ H ₈)(CO) ₃] 1s 4.		
	The correct statements are 1) (i) & (ii) only.	2) (i) &	(iii) only		
	3) (ii) & (iii) only.			•	
	17. What is the most stable product for	mad dua ta la avi	dation of [Ca(CND-1	3- with U-2	
	1) [HCo(CN) ₅] ²⁻	med due to 1e-oxi		with 112:	
	2) $[H_2Co(CN)_4]^{2-}$				
	3) [HCo(CN) ₅] ³⁻				
	4) [H ₂ Co(CN) ₄] ²⁻			•	,
	18. Consider the following statements,		·		
	(i) Addition of MeI to [IrCl(C	O)(PPh ₃) ₂] is trans			
	(ii) Addition of HBr to [IrBr(C		metal hydride.		•
	(iii) Addition of dioxygen to [R	$hCl(PPh_3)_3$] is cis.			
	The correct statements are 1) (i) & (ii) only.	2) (i) & (iii) only	J.		
	3) (ii) & (iii) only.	4) (i), (ii) & (iii)			
	19. What is the most stable product for	rmed, when IFe(C(O) I is reacted with 1	1.3-butadiene	
	(C ₄ H ₆)?		- / -	· · · · · · · · · · · · · · · · · · ·	
	1) [Fe(CO) ₄ (η^4 –C ₄ H ₆)]				
	2) [Fe(CO) ₃ (η^4 -C ₄ H ₆)]	·			
	3) [Fe(CO) ₄ (η^2 –C ₄ H ₆)]				
	4) [Fe(CO) ₂ (η^4 -C ₄ H ₆)]	•			
	20. The nucleophilicity of the R group	varies in the follo	wing order,		
	1) LiR > NaR > RMgX >			•	
•	2) NaR > LiR > RMgX >				
	3) LiR > NaR > ZnR ₂ = 3 4) NaR > LiR > ZnR ₂ = 3				
	4) Nak > Lik > Ziik ₂	> Kwgx			
			•		
,	·				
					•
•					
	·				
•					

•

.

THE OPEN UNIVERSITY OF SRI LANKA **B.Sc. DEGREE PROGRAMME 2009/2010** CHU3127/CHE5127 - ORGANOMETALLIC CHE ASSIGNMENT TEST II - MCQ TEST

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.
Name:-

Reg. No.

	Marks
Part A	
Part B	
Total %	

FOR EXAMINER'S USE	Marks
Unanswered	
Correct Answers	
Wrong Answers	
Total	

1.	1	2	3	4

3.

1	2	3	4

6.

1	2	3	1
1	_	٦	

9.

12.

15.

1	2	3	4
•	_	_	•

1	2	3	4
			<u> </u>

Part B (40 marks)

Answer the qu	estions in the space	provided. Attached	sheets will not be graded.
---------------	----------------------	--------------------	----------------------------

1. ([PdR₂(dppe)] (dppe = PPh₂CH₂CH₂PPh₂) undergoes oxidative addition with RI to give the octahedral complex (X).
	(i) Write the molecular formula of (X)
	(ii) Draw and identify two structures of (X).
	H_2 oxidatively adds to $[Os(CO)_5]$ to give cis - $[OsH_2(CO)_4]$. Write the mechanism of the above reaction. (Hint: $[Os(CO)_5]$ is a 18e complex).
(c)]	Identify (A), (B) and (C) of the following reaction scheme. Na MeCOCl Δ
	$[Mn_2(CO)_{10}] \xrightarrow{Na} (A) \xrightarrow{MeCOCl} \Delta$ $[Mn_2(CO)_{10}] (C)$
A)	(B)
C)	
(d) I	How would you account for the variation in v(CO) of the following compounds?
	Compound v(CO) in cm ⁻¹ free CO 2143
	fac-[Mo(CO) ₃ (PCl ₃) ₃] 2040, 1991

(e) Name three coordination modes of the hydride ligand. Give an example each.

2. (a) Predict the product(s) of the following reactions using	the hint given in the brackets
reactions using	the mint given in the prackets

(ii) [Mo(CO)₆] + PPh₂CH₂CH₂PPh₂
$$\rightarrow$$
 (substitution)

(iii)
$$[Fe(CO)_5] + 2 CF_3C = CCF_3 \rightarrow$$
 (oxidative coupling)

(iv)
$$[(\eta^5-Cp)Mo(CO)_3(\eta^2-CH_2=CH_2)]^+ + NMe_3 \rightarrow$$
 (neucleophilic attack on a coordinated ligand)

(v) [Mo(CO)₃(
$$\eta^6$$
-C₇H₈)] + Ph₃CBF₄ \rightarrow (deprotonation)

- (b) Write on the dotted line the **reagent(s)** which can be used to carry out the following conversions.
 - (i) $[(\eta^5-C_5H_5)Fe(CO)_2]^- \rightarrow [(\eta^5-C_5H_5)Fe(Me)(CO)_2]$ -----
 - (ii) $trans-[FeCl_2(dppe)_2] \rightarrow trans-[FeH_2(dppe)_2]$ -----
 - (iii) $[(\eta^5-C_5H_5)_2\text{TiCl}_2] \rightarrow [(\eta^5-C_5H_5)_2\text{Ti}(\text{Me})_2]$ -----
 - (iv) $[WCl_6] \rightarrow [(\eta^5-C_5H_5)_2WH_2]$ -----
 - (v) $[Pt(PPh_3)_3] \rightarrow trans-[HPt(CN)(PPh_3)_2]$ -----

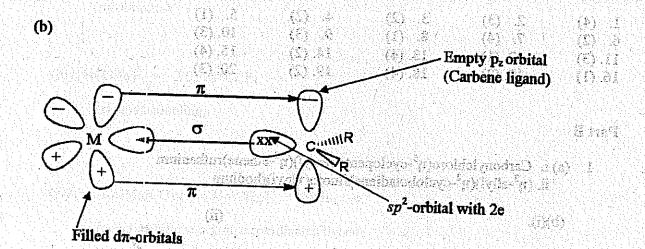
THE OPEN UNIVERSITY OF SRILANKA B.Sc. DEGREE PROGRAMME 2009/2010 CHU3127/CHE5127-ORGANOMETALLIC CHEMISTRY-LEVEL 5 ASSIGNMENT TEST-I ANSWER GUIDE

Part A - MCQ ANSWER GUIDE

3.	1		11	13	507	3673	233	_		-	200	/135	70%	i by				Mi.	16:50		200	Met.		100		5.57	4000	600	is die	Philip	1807	
, i	L.		(4)			194	hah-	2.	∵ {	3	1				3.	1	(7	١.	100		. 1	1	- 1	' ን ነ			(7)F	4	2	11	1	
þ.	- I		>-	60		S. J.		T:	٠,	۳.	100	33.			٠.		ب.	/ : :		11.15		T.	. (2)	he in	40.0	111		5.	₹1	.) .	3
٤,	Æ	έşθ,	<i>(</i> 7)	1		13.11		7	1	A'	٠: · · ·	100	980		Ω		13			1.7		•	· .			3.70		1000			5	
13.	v.	3/2 l	(2)		-31		NO.	7.	ા	*			8 W.		8.	300	1	1	480			7 0	· 1	(3)	1733	Tel.	114		lO.	/7	v	100
41		38.00	2.0	Sec. 5	176	i ya	9-12	1.0			20.00					inine.		1000		SA.		w i	্ৰ	~ /		11.	357			٧-	,	10
£.	П	L I	(3)			٠,		12	· (Т.	Щ.,	1800		60.5	13		ľÆ	١			់	I A		3		100	3.45			11	•	Н,
	;:-	7 T.	\ ⊤₄	4.3-1					11.	٠.	+	144	ůx.		L		ι,	,	-00	y. 50		L+		(2)	1000	400	可能	1	L 5 .	14	,)	ж.
	16	٠.	/13					17		σ,					10				11.5		法法事。								100			
		7. I	(1)	,	١.).	£ ".	100	17	. (L		175		1144	18	. 1	4)	W.S.		100	19	- ((2)				- 7	20.	/2	1	
6	400			1.5	7 (H)			***					F	A. 16	. T		• • •				9.7		٠,	,,	1:11	13.5	110	. 4			,	£.,

Part B

 (a) i. Carbonylchloro(η⁵-cyclopentadienyl)(η²-ethene)ruthenium ii. (η³-allyl)(η²-cyclobutadiene)fluoro(vinyl)rhodium


(c) (i).
$$Rh^{3+}$$
 = 6e (ii) Ru^{0} = 8e
F = 2e Cl = 1e
 $(\eta^{3}-C_{1}H_{5})^{-}$ = 4e $(\eta^{2}-C_{2}H_{4})$ = 2e
 $(\eta^{1}-ClH=CH_{2})^{-}$ = 2e $(\eta^{3}-C_{5}H_{5})$ = 5e
 $(\eta^{2}-C_{4}H_{4})$ = 2e CO = 2e
VEC = 16e VEC = 18e

(d) The 18e-rule says that a metal center would form a stable compound if the valence electron count of the metal is 18.

Bully Harrely

PARA DECEMBER GIRDE

Total number of electron pairs = 6 = Coordinator Number

(c) (i)
$$MeCN < CF_3CN < CO < CS$$

(ii)

(ii)
$$PF_3 < PCl_3 < PH_3 < PMe_3$$

047. -

THE OPEN UNIVERSITY OF SRILANKA
B.Sc. DEGREE PROGRAMME 2009/2010
CHU3127/CHE512''-ORGANOMETALLIC CHEMISTRY-LEVEL 5
ASSIGNMENT TEST II

的数据的特殊的实现的

Part A - MCQ ANSWER GUIDE

Á	1	í.		11	`					•		r À		A				_						40		33					1.					
			100	(4		1.5				2.	(4	1				j.	3.	्र	(3)			d.	4.		(4)) :		i i	Ž.	5	1)	(2)	
	6	١.		(1)	Ä.	Ç.			7.	៉ុវ	1)					8.	7	(3)) "			(H	9		(2	١.		Η,			1. 2.3	(3		77.1
	5.0		3.5	7.5	7	6, 3				0.14					浩	16	11.7	-17.2		Z 77	1000				- 60		7. 5		8		3.5	4	· 10 10 10 10 10 10 10 10 10 10 10 10 10			
			· 1. 2-3	(2		11 1			٤.	12	. (Ţ)		ġ,		\$/ i }	13). ((4)				1	ł.	(2))			Ay	4	5.	(1)	
	1	6).	(1)		Ų.			17	. (3)					18	1	[4]	\		17.75	ġή.	10)	(2	١.		Mil.	Š.	2	Ω	(2	1	
V	97	13	47 -	15		ho	0.0	10		. :	Ā., "		F	Œ		16	14		1			, se fil	된	: 17	-		ν.	<i>r</i> :	1.0	100		~	v.	-	10	

Part B

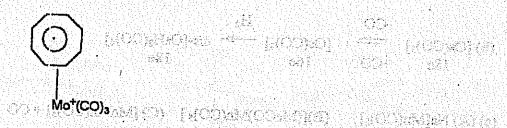
(a) i. [PdI(R)₃(dppe)]
 ii.

$$\begin{array}{c|c} Ph_2 & R & Ph_2 & R \\ \hline Ph_2 & R & Ph_2 & R \\ \hline Ph_2 & R & Ph_2 & R \\ \hline \end{array}$$
 or
$$\begin{array}{c|c} Ph_2 & R & Ph_2 & R \\ \hline Ph_2 & R & Ph_2 & R \\ \hline \end{array}$$

- (c) (A) $Na[Mn(CO)_5]$ (B)[(MeCO)Mn(CO)₅] (C) [MeMn(CO)₅] + CO
- (d) v(CO) α strength of the C≡O bond.
 The bond order of C≡O is 3 and it has a higher frequency that of the metal complexes. Eack donation weakens the C≡O bond order than electron donor ability of PE₁₃ > PCl₃. Thus (C≡O) of fac-[Mo(CO)₃(PEt₃)₃] < fac-[Mo(CO)₃(PCl₃)₃]. fac-complexes show two IR bands.
- (e) (i) Terminal hydride [CoH(CO)₄], [ReH₉]²⁻
 (ii) Doubly bridging hydride [μ₂-H], [(OC)₅W(μ₂-H)W(CO)₅]
 (iii) Triply bridging hydride [μ₃-H], [Re(CO)₃(μ₃-H)]₄
 (iv) Encapsulated hydride [HCO₆(CO)₁₅Γ

Banken entertroereteten ba TO ENDEY THOUSANT STREET

2. (a) (i) cis-[Mn(COMe)(CO)₄(PPh₃)]


(ii) [Mo(CO]4(dppe)] + 2CO

(iii)

TO CONTRACT A HAR

NAMES OF

(v) $[(\eta^7 - C_7 H_7) Mo(CO)_3] BF_4 + Ph_3 CH$

- has Celyantoning and Copy (a) (b) (i) MeI
 - (ii) NaBH4 or LiAlH4 (iii) LiMe
 - 3 (marth 1000) of the (0=0) and 1000 (1000) if the Major to 1000 (1000) if
 - (iv) NaBH4 and NaCp
 - DO THE DESIGNATION OF THE PARTY SEEDS THE RESIDENCE OF ACT-OF COOKET TENENDAMOR SOMETHING (III) Tarophopiquesaval babingaar (va