

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc/ B.Ed DEGREE PROGRAMME/ STAND ALONE COURSES IN SCIENCE

FINAL EXAMINATION- LEVEL 4- 2009/2010

LIBRAEN E

CHU 2125/ CHE 4125- ANALYTICAL CHEMISTRY

(2 ½ hours)

Thursday 28th January 2010

1.00 p.m.- 3.30 p.m.

ANSWER ANY FOUR QUESTIONS.

IF MORE THAN FOUR QUESTIONS ARE ANSWERED, ONLY THE FIRST FOUR ANSWERS WILL BE MARKED.

- 1.(a)(i) What is meant by a 'buffer solution'? Write an expression for 'buffer ratio' and identify the terms in it.
 - (ii) Write down the expression for pH of a buffer solution in terms of pK_a of the weak acid and the concentrations of the weak acid and its conjugate base.

(20 marks)

(b) Ethylenediaminetetraacetic acid (EDTA, H_4Y) is used widely as a complexing agent in titrations for the determination of a variety of metal ions. It has the following dissociation constants (mol dm⁻³). $K_1 = 1.0 \times 10^{-2}$; $K_2 = 2.14 \times 10^{-3}$; $K_3 = 6.9 \times 10^{-7}$; $K_4 = 5.5 \times 10^{-11}$

The expression for the fraction α_{γ^4} of EDTA in the form Y^4 in terms of H⁺ concentration and dissociation constants K_1 , K_2 , K_3 and K_4 is

$$\frac{1}{\alpha_{\gamma^{4-}}} = 1 + \frac{[H^+]}{K_4} + \frac{[H^+]^2}{K_3 K_4} + \frac{[H^+]^3}{K_2 K_3 K_4} + \frac{[H^+]^4}{K_1 K_2 K_3 K_4}$$

- (i) How will α_{y^4} vary with increasing pH?
- (ii) Calculate α_{γ^4} in a solution of EDTA that is buffered to pH 10.0.
- (iii) For the equilibrium, $M^{n+} + Y^{4-} \rightleftharpoons MY^{(n-4)+}$, show that the conditional

formation constant K_{MY} is given by $K_{MY} = \alpha_{Y} - K_{MY} = \frac{[MY^{(n-4)+}]}{[M^{n+}][Y^{1}]}$. Calculate

the conditional formation constant of Ca-EDTA complex at pH 10.0. Formation constant for Ca-EDTA is 5.0x10¹⁰ mol⁻¹ dm³. (50 marks)

- (c) Titration of Ca²⁺ and Mg²⁺in a 50.0 cm³ sample of hard water required 23.50 cm³ of 0.01 mol dm⁻³ EDTA. A second 50.0 cm³ aliquot was made strongly basic with NaOH to precipitate Mg²⁺ as Mg(OH)₂. After filtration, the supernatant liquid was titrated with EDTA solution; for this titration, 14.50 cm³ of the EDTA solution was required. Calculate
 - (i) The total hardness of the water sample expressed as ppm of CaCO₃.
 (ii) The concentration (ppm) of Ca²⁺ in the sample.

 - (iii) The concentration (ppm) of Mg²⁺ in the sample. (C = 12; O = 16; Mg = 24; Ca = 40)

(30 marks)

2. Six random samples were taken from a dolomite ore, digested and 50.00 cm³ of the digested solutions were titrated with 0.02 M EDTA to determine the concentration of Ca²⁺. The following results were obtained.

Sample	1		 -	·		_
Volume of EDTA	1 26.05	2	3	4	5	6
(cm ³)	26.05	26.10	26.15	26.05	27.10	26.15
(0.1.5)	<u> </u>					

- (a)(i) Outline a procedure that you would have followed in the selection of random samples from this ore.
 - (ii) If the true concentration of Ca²⁺ in the digested solution was 400 ppm, calculate the equivalence point (Ca = 40). (Show the calculation steps).
- (b)(i) Is there a systematic error in the set of results? Explain your answer with proper calculations.
 - (ii) Suggest two systematic errors that would have happened during this titration.
 - (iii) Comment on the following statement. "Systematic error affects accuracy but not the precision". (30 marks)
- (c)(i) Check statistically whether there are any outliers in this set of results at 96% confidence level. (for n = 6, Q=0.64; for n = 5, Q=0.73)
 - (ii) Why do you test for outliers? Explain your answer with proper calculations for the above set of data.
 - (iii) Assuming that the above set of results is normally distributed, draw schematic diagrams to show the results before and after rejecting the outliers.
- (d) One student suggested that repeating the titration with 25.00 cm³ of the sample solution (instead of 50.00 cm³) would minimize the error. What do you think of this suggestion? Briefly explain your answer. (10 marks)
- 3. (a)(i) What is meant by the solubility product of a sparingly soluble compound?
 - (ii) The solubility product (K_{sp}) at 38°C of lead phosphate, Pb₃(PO₄)₂ is 3.0x10⁻⁴⁴ mol⁵ dm⁻¹⁵. Calculate the molar solubility of lead phosphate at 38 °C.
 - (iii) Predict whether or not a precipitate will be formed when 10.0 cm³ of 0.03 mol dm⁻³ Pb(NO₃)₂ solution is mixed with 20.0 cm³ of 0.006 mol dm⁻³ NaCl solution. K_{sp} for $PbCl_2$ is 1.6×10^{-5} mol³ dm⁻⁹. (40 marks)

- (b) A gravimetric analysis to determine the concentration of Pb^{2+} involved slow generation of SO_4^{2-} in situ by the following reaction: $HSO_3NH_2 + HNO_3 \rightarrow 2H^+ + SO_4^{2-} + N_2O + H_2O$ to precipitate Pb^{2+} as lead sulphate.
 - (i) Briefly explain the advantage(s) of this method in terms of the quality and purity of the precipitate.
 - (ii) Identify the process that takes place above and give another example where this process is used in gravimetry.
- (iii) How does this method overcome the problem(s) that you would envisage if you prepared lead sulphate by adding a solution of SO_4^{2-} to a Pb^{2+} solution.

(40 marks)

- (c)(i) Write the factors that affect the solubility of a precipitate.
 - (ii) Write the important steps in gravimetric analysis.

(20 marks)

- 4.(a) Write down the Gibb's phase rule and calculate the number of degrees of freedom:
 - (i) at the triple point of the water
 - (ii) for a system in which liquid ethanol is in equilibrium with its vapour.

(20 marks)

- (b)(i) Write down the expressions for the terms 'distribution coefficient' K_D and 'distribution ratio' D_C for a substance A present in solvents 1 and 2. Identify the terms in them.
 - (ii) Write down expressions for the terms K_D and D_C for the system, acetic acid (CH₃COOH) in a mixture of water and benzene. In benzene acetic acid exists as a dimer.
 - (iii) 1g of benzoic acid originally dissolved in 100 ml of water is to be equilibrated with 100 ml of ether at pH 7. Distribution ratio, $K_D=100$, $K_a=6.5 \times 10^{-5}$. Calculate D_C . (40 marks)
- (c)(i) When a compound dissolved in the aqueous layer is extracted into an organic layer, the fraction remained in the aqueous layer after nth extraction, f_n is given by

$$f_n = \left[\frac{V_w}{V_w + D_C V_O} \right]^n$$

A compound X is dissolved in 50 cm^3 of aqueous layer and it is extracted four times, using 12.50 cm^3 ether each time for extraction. D_C is given as 50. Calculate the fraction of solute remained after the 4^{th} extraction.

(ii) Briefly explain the effect of *pH* on solvent extraction of aluminium by 8- hydroxyl quinoline. Draw a typical extraction curve (curve of %E vs. *pH*) for Al³⁺. (40 marks)

- 5.(a) Write down the Nernst equation for the reaction, $A^{+}_{(aq)} + B^{+}_{(aq)} \leftrightarrow A_{(s)} + B^{2+}_{(aq)}$
 - (b) For the reaction, $U^{4+} + 2Ce^{4+} + 2H_2O \Leftrightarrow UO_2^{2+} + 2Ce^{3+} + 4H^{4+}$
 - (i) Comment on the feasibility of the reaction.
 - (ii) Write down the expression for E_{cell} according to Nernst equation.
 - (iii) Derive an expression for the potential at equivalence point in the titration of 0.05 M U⁴⁺ with 0.01 M Ce⁴⁺. Assume both solutions are 1.0 M in H₂SO₄. $UO_2^{2+} + 4H^+ + 2e \Leftrightarrow U^{4+} + 2H_2O \quad E^0 = 0.334V$

$$UO_2^{2+} + 4H^+ + 2e \Leftrightarrow U^{4+} + 2H_2O$$
 $E^0 = 0.334$ $Ce^{4+} + e \Leftrightarrow Ce^{3+}$ $E^0 = 1.44V$

- (iv) In a titration, 25.0 cm³ of 0.01 M U⁴⁺ solution required 20.00 cm³ of Ce⁴⁺ solution. Calculate the concentration of Ce⁴⁺ solution. (60 marks)
- (c)(i) What is meant by a redox titration? How does it differ from an acid- base titration.
 - (ii) Write two methods by which the end point in a redox titration can be detected.
- 6. (a)(i) Write down two advantages of conductometry as compared with titrimetry.
 - (ii) The SI unit of conductance is Siemens (S). Express a Siemen in terms basic SI
 - (iii) The resistance of a voltmeter is $10^{12} \Omega$; it read 1.5 V, when it was used to measure the potential of a cell. What was the current (in amperes) that passed during the measurement?
 - (iv) Sketch the conductometric titration curve for a titration of strong base (titrant) vs. weak acid. Highlight the equivalence point. (40 marks)
- (b)(i) A light beam has a wave length of 0.085 microns. What is the energy of a photon in joules? (c= $3x10^8$ m s⁻¹; h=6.63x10⁻³⁴ Js)
 - (ii) In a UV-Visible spectrometer, radiant power of the incident light is 80 and two thirds of it is absorbed by the sample. Calculate the percentage of transmittance.
 - (iii) A solution having a concentration of 0.002 mol dm⁻³ shows an absorption of 0.36 at 256 nm. (The path length of the cell is 2.00 cm). What is the molar absorptivity (dm³ mol⁻¹ cm⁻¹) of this solution?
- (iv) Briefly describe the important function(s) of each of the following units:
 - Hollow Cathode lamp (HCL) (I)
 - (II)Atomizer
 - Photodetector (III)

Write down the disadvantage(s) of an Atomic Absorption Spectrometry (AAS). (60 marks)

