

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc./B.Ed. DEGREE/STAND ALONE COURSES IN SCIENCE - LEVEL 4

FINAL EXAMINATION - 2009/2010

CHU2123/CHE4123 - INORGANIC CHEMISTRY

09 th July 2010 (Friday)	9.30 a.m. – 12.00 noon
Gas constant, R	$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
Planck's constant, h	$= 6.63 \times 10^{-34} \text{ J s}$
Avogadro constant, L	$= 6.023 \times 10^{23} \mathrm{mol}^{-1}$
Velocity of light, c	$= 3 \times 10^8 \text{ m s}^{-1}$
Charge on electron	$= 1.602 \times 10^{-19} \mathrm{C}$
Mass of an electron	= 0.0005 a.m.u.
Mass of a proton	= 1.0073 a.m.u.
Mass of a neutron	= 1.0089 a.m.u.
1 a.m.u.	$= 1.661 \times 10^{-27} \mathrm{kg}$
1 Mev	$= 1.6021 \times 10^{-13} \mathrm{J}$

Answer any FOUR (04) questions.

If more than four questions are answered, only the first four answers will be marked.

- 1. (a) (i) Give the IUPAC name of [CoCl(CO)(NH₃)₂] (A).
 - (ii) This diamagnetic complex (A) shows two geometrical isomers.

 Draw and identify each isomer.
 - (iii) Determine the effective atomic number (EAN) of Co in (A). (Atomic number of Co is 27).
 - (iv) According to valence bond theory (VBT), what is the hybridisation of Co in (A)

(40 marks)

- (b) (i) According to the **Crystal Field Theory** what is the *d*-electron configuration of cobalt in [CoBr₄]⁻? (Atomic number of Co is 27).
 - (ii) Calculate the Crystal Field Stabilisation Energy (CFSE) in kJ mol⁻¹ if $\Delta_t = 90$ kJ mol⁻¹.
 - (iii) Calculate the Total Stabilisation Energy (**TSE**) in kJ mol⁻¹ if the pairing energy is 120 kJ mol⁻¹.
 - (iv) Calculate the spin only magnetic moment (μ_s) of [CoBr₄]⁻. (40 marks)
- (c) (i) What is the relationship between the overall stability constant β_N of a metal complex $[ML_N]^{m+}$ and the stepwise formation constants $K_1, K_2, K_3, ...K_N$ for each step in the formation of the complex.
 - (ii) $\log \beta_3$ and $\log \beta_4$ values for the formation of $[Ni(NH_3)_3]^{2+}$ and $[Ni(NH_3)_4]^{2+}$ are 6.7 and 7.9 respectively. Calculate the K_4 value for the following reaction. $[Ni(NH_3)_3]^{2+} + NH_3 \Rightarrow [Ni(NH_3)_4]^{2+}$
 - (iii) The $\log \beta_4$ value for the formation of $[Cu(NH_3)_4]^{2+}$ is 12.7, comment on the stability of $[Cu(NH_3)_4]^{2+}$ and $[Ni(NH_3)_4]^{2+}$. (20 marks)
- 2. (a) A **neutral six-coordinate** mononuclear complex (B) of iron(II) contains only ethylenediamine (en) and chloride ligands. The Group number of Fe is 8 and its atomic number is 26.
 - (i) What is the molecular formula of (B)?
 - (ii) Draw and identify the two geometrical isomers of (B).
 - (iii) (B) is a diamagnetic compound. According to crystal field theory (CFT), what is the d-electron configuration of iron in (B)? (30 marks)
 - (b) How would you prepare cis-[NiCl₂(CO)(NH₃)] from [NiCl₄]²if the trans-effect order is CO > Cl > NH₃. (20 marks)

- (c) Define the following as applied in the study of molecular symmetry.
 - (i) Vertical plane
 - (ii) Dihedral plane

(10 marks)

(d) Consider the planar molecule with two benzene rings as shown below.

- (i) Copy the above structural formula on to your answer sheet and indicate all the <u>improper</u> axes of rotation of the molecule in standard notation (clearly indicating the order of each axis) on it.
- (ii) What is the symmetry point group of this molecule? Briefly explain your answer.

(24 marks)

- (e) Briefly explain the following statements.
 - (i) The dipole moment of a molecule <u>must be</u> aligned with an axis of rotation (of order greater than 1) of the molecule.
 - (ii) A molecule with <u>more than one</u> axis of rotation (of order greater than 1) <u>cannot</u> have a dipole moment.

(16 marks)

- 3. (a). (i) What is meant by the term 'binding energy' of a nucleus?
 - (ii) Calculate the mass defect (in kg) equivalent to the binding energy of 9×10^{-11} Joule.
 - (b) A part of the (4n+2) decay series is given below.

$$^{238}_{92}U \xrightarrow{-\alpha} X \xrightarrow{?} ^{234}_{91}Pa \xrightarrow{-\beta} Y \xrightarrow{?} ^{230}_{90}Th \xrightarrow{-\alpha} Z$$

Complete the portion of the series by adding missing particles and, mass numbers and atomic numbers of X, Y, Z.

- (c) Strontium-90 undergoes β -decay with a half life of 28 years. (Atomic number of Sr = 38)
 - (i) What is meant by the term 'Half life'?
 - (ii) Calculate the decay constant
 - (iii) Write down the nuclear equation for the above decay process.
 - (iv) If strontium-90 is accidentally released into the environment. what fraction will remain after 7 year?
 - (v) What fraction of the strontium-90 released in the atomic bomb explosions of 1945 would still be remaining in the year 2029? (40 marks)

- (d) Write a short account on "Applications of Radioactive Nuclides". (20 marks)
- 4. (a) What kind of attractive forces exist in
 - (i) solid carbon dioxide
- (ii) graphite
- (iii) diamond

(15 marks)

- (b) Relate the type of attractive forces described in (a) to explain the difference in hardness between graphite and diamond. (20 marks)
- (c) (i) Comment on the statement "The unit cell of CsCl cannot be strictly described as body centred cubic".
 - (ii) Show that the formula of CsCl is consistent with its unit cell picture.
 - (iii) Give the coordination number of Cs⁺ ion and Cl⁻ ion.

(30 marks)

- (d) Chromium form cubic unit cell with a cell edge of 2.885 Å. The density of metal is 7.2 g cm⁻³.
 - (i) Calculate the number of atoms in the unit cell.
 - (ii) Identify the type of cubic unit cell in chromium.

 (Atomic mass of chromium is 51.9 g mol⁻¹)

(35 marks)

- 5. (a) (i) Why is diborane called an electron deficient compound?
 - (ii) Describe the formation of a three centre bond in diborane.

(35 marks)

- (b) Use E° values given below for Thallium to explain "inert pair effect". $E^{\circ}(Tl^{3+}/Tl) = +2.18 \text{ V}$; $E^{\circ}(Tl^{+}/Tl) = -0.34 \text{ V}$ (15 marks)
- (c) Considering three suitable examples illustrate how lithium behaves differently from the rest of Group 1 elements. (20 marks)
- (d) Give reasons for the following
 - (i) "Pyrex glass can withstand high temperature".
 - (ii) Nitrogen gas is substituted by Helium to dilute oxygen in gas cylinders used by divers.
 - (iii) Chlorofluorocarbons are not used as refrigerants any more. (30 marks)
- 6. (a) Distinguish between
 - (i) A stoichometric defect and a non stoichiometric defect
 - (ii) A line defect and a plane defect

(30 marks)

- (b) (i) Use a clearly labelled diagram to explain the Frenkel defect in crystals.

 Does the Frenkel defect have any effect on the density of a solid? Explain.
 - (ii) How does this defect differ from the defect present in a crystal of Ruby?
 (30 marks)
- (c) A sample of sodium chloride is contaminated with sodium carbonate. The carbonate ion can be removed from a solution in water as insoluble barium carbonate and the remaining chloride ions can be analysed by titration with silver nitrate solution using the reaction,

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

In such an analysis 5.65 g of the contaminated sodium chloride was dissolved In water and made up to 250.0 cm³. A 25.00 cm³ of this solution was taken and mixed with excess barium nitrate solution. After filtering and washing the residue the filtrate was titrated with silver nitrate solution of concentration 0.430 mol dm⁻³. The volume of silver nitrate required for a complete reaction was 19.7 cm³. (Mass numbers of Na = 23 and Cl = 35.5).

- (i) Determine the mass of sodium chloride in the solution.
- (ii) Calculate the purity (by mass) of the sodium chloride (40 marks)