

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc./B.Ed. DEGREE /STAND ALONE COURSES IN SCIENCE- LEVEL 5

FINAL EXAMINATION-2009/2010

CHU3127/CHE5127 - ORGANOMETALLIC CHEMISTRY

Date: 21th January 2010 (Thursday)

Time 1.00 - 3.30 p.m.

Answer any FOUR (04) questions. If more than four questions are answered, only the first four answers will be marked.

- 1. (a) Give IUPAC name for each of the following complexes.
 - (i) $[CrI(\eta^5-C_5H_5)(\eta^2-C_2H_4)_2]$
 - (ii) $[RuCl(\eta^3-C_3H_5)(\eta^4-C_4H_4)(CO)]$

(20 marks)

- (b) Draw the structures of the following complexes,
 - (i) (η¹-Allyl)bromo(η⁵-cyclopentadienyl)di(η²-ethene)molybdenum.
 - (ii) Bromodicarbonyl(η⁴-cyclobutadiene)(ethyl)ruthenium.
 - (iii) (η⁶-Benzene)bromoethynyl(triphenylphosphine)cobalt

(30 marks)

- (c) (i) Determine the valence electron count (VEC) of the complex [CoCl(Me)(η¹-C₃H₅)(CO)₂(η²-C₂H₄)] using the ionic model. (Indicate in your work out, the electron contribution made by each ligand, Co is a Group 9 metal).
 - (ii) Determine the valence electron count (VEC) of the complex [Ni(η³-C₃H₅)Cl(CO)]using the covalent model.
 (Indicate in your work out, the electron contribution made by each ligand, Ni is a Group 10 metal).

(22 marks)

(d) The nickel complex [NiCl(Br)(PPh₃)₂] shows three isomers. Draw and identify the structures of them.

(18 marks)

(e) List the following trans-compounds in the increasing order of the IR frequency of the carbonyl band.
 [Mo(CO)₄(PPh₃)₂] (A), [Mo(CO)₄(PF₃)₂] (B) and [Mo(CO)₄(PMe₃)₂] (C). (10 marks)

2. (a) Describe the bonding between a metal (M) and an alkynyl group (e.g. M−C≡CPh). (20 marks) (b) Give four main differences between Fischer-carbenes and Schrock-carbenes. (20 marks) (c) How would you account for the variation in the N≡N stretching frequency of the following compounds? Compound $\nu(N\equiv N)$ in cm⁻¹ free N2 2330 $[Ni(N_2)]$ 2088 $[Ni(N_2)_2]$ 2187 (20 marks) (d) Briefly comment on the electronegativity of 3d-series (20 marks) (e) What are the main differences between M-alkene and M-alkyl bond. (20 marks) 3. (a) (i) What factors promote metallacyclopropane character in alkene-metal complexes. (ii) Which one of the following compound (D) or (E) is more likely to have a metallacyclopropane structure. Give your reasons. $[IrBr(PMe_3)_3\{(NC)_2C=C(CN)_2\}]$ (**D**) $[IrBr(CO)_3{(MeHC=CHMe)](E)}$ (20 marks) (b) (i) Determine the coordination geometry of the Re-NO fragment in the 18e-complex [Re(NO)(CO)₄(PPh₃)] (F). Re is a Group 7 metal. (ii) Draw the orbital diagram showing the overlap of orbitals of NO and the metal in (F). (20 marks) (c) Write the possible pathways for the decomposition of [TiEt₄]. (20 marks) (d) Draw the structure of the product that you would get when you react $(CF_3)_2C=0$ with $[Pt(PEt_3)_4)]$. (20 marks) (e) Draw and name four coordination modes of the hydride ion. (20 marks)

- 4 Predict the major product(s) of each of the following reactions, using the hint given in the brackets).
 - (a) cis-[(Ph₃P)₂PtCl₂] + LiCH₂CH₂CH₂CH₂CH₂Li → (nucleophilic substitution)
 - (b) $2 [Co(CN)_5]^{3-} + MeI \rightarrow (1e oxidative addition)$
 - (c) $\lceil (\eta^5 Cp)Rh(CO)(PPh_3) \rceil$ + MeI \rightarrow (2e-oxidative addition)
 - (d) $[(\eta^5-C_5H_5)(PPh_2CH_2PPh_2)FeC\equiv CR] + Me_3O^+ \rightarrow$ (electrophilic attack)
 - (e) $[(\eta^5-Cp)Mo(CH_2CH_3)(CO)_3] + Ph_3CBF_4 \rightarrow (hydride abstraction)$
 - (f) $[IrCl(PPh_3)_3]$ \triangle (cyclometallation)
 - (g) $[(\eta^5-C_5H_5)_2WMe(\eta^2-CH_2=CH_2)]^+ + Me^- \rightarrow (nucleophilic addition)$
 - (h) $[(\eta^5-Cp)_2Zr(CO)_2] + 2 F_2C=CF_2 \rightarrow$ (oxidative coupling)
 - (i) $[(\eta^5-Cp)Fe(\eta^1-CH_2CH=CH_2)(CO)_2] + HCl \rightarrow$ (electrophilic addition)
 - (j) [Mn(CO)₅(η^1 -CH₂CH=CH₂)] \triangle (loss of CO and coordination) (10 x10 marks)
- (a) In the presence of a palladium catalyst (0.00001 mmol), MeI (8.0 mmol) reacts completely with MeCH=CH₂ (8.0 mmol) to give butene. The reaction time is 20 min. Calculate the Turnover number (TON) and Turnover frequency (TOF).
 - (b) MeBr oxidatively adds [IrBr₂(CO)₂] to give (G). (G) in the presence of CO gives the acetyl complex (H). (H) reductively eliminates (I) to regenerate [IrBr₂(CO)₂]. Identify (G), (H) and (I). (30 marks)
 - (c) Suggest reagent(s) or catalysts which can be used to carry out the following conversions.
 - (i) $[(\eta^5-Cp)_2ZrCl_2] \rightarrow [(\eta^5-Cp)_2Zr(C\equiv CPh)_2]$
 - (ii) $CH_2=CH_2 + \frac{1}{2}O_2 \rightarrow CH_3CHO$

- (iii) $[(\eta^5-Cp)_2Zr(H)Cl] \rightarrow [(\eta^5-Cp)_2Zr(CH=CH_2)Cl]$
- (iv) $[(\eta^5-Cp)_2Ta(Me)_2]^+ \rightarrow [(\eta^5-Cp)_2Ta(=CH_2)(Me)]$
- (v) $[(\eta^5-Cp)WH(CO)_3] \rightarrow [(\eta^5-Cp)W(\eta^2-H_2)(CO)_3]BF_4$ (40 marks)
- (d) What are the two aldehydes formed due to hydroformylation of PhCH=CH₂? (10 marks)
- 6. (a) The catalyst [RhCl(PPh₃)₃] reacts with H₂ to give the octahedral Rh(III) dihydride (K). Replacement of PPh₃ by CH₂=CH₂ of (K) gives the olefin-complex (L). In the presence of PPh₃, (L) undergoes migratory insertion to give the octahedral alkyl-complex (M). (M) reductively eliminates the alkane (N) to regenerate the catalyst [RhCl(PPh₃)₃].
 Write the molecular formulae of (K), (L), (M) and (N).
 - (b) Reduction of [(η⁵-Cp)Ru(CO)₂]₂ with K gives the salt (X). (X) reacts with MeI to give the complex (Y) and KI. In the presence of PPh₃, (Y) is converted into the acetyl-complex (Z). Identify (X), (Y) and (Z).
 - (c) (i) What is meant by the "Monsanto Process"?
 - (ii) Write the balanced equations for
 - (x) formation of MeI
 - (y) catalytic carbonylation of MeI
 - (z) conversion of the product formed in (ii) to the desired product. (20 marks)
 - (d) What is the main product formed due to metathesis of cyclopentene and CH₃(CH₂)₅CH=CH(CH₂)₇CO₂Me (10 marks)