

THE OPEN UNIVRVERSITY OF SRI LANKA

B. Sc. DEGREE PROGRAMME / STAND ALONE COURSE 2010/2011

LEVEL 4 - FINAL EXAMINATION

CMU2221 / CME4221 - ORGANIC CHEMISTRY

DURATION: 3 HOURS

AUG 2011

Thursday 30th June 2011

9.30 a.m. = 12.30 p.m.

ANSWER ALL QUESTIONS

1. (a) State whether each of the following compounds (A) - (D) is chiral or achiral.

(08 marks)

(b) Showing the priority order of the groups, according to Cahn-Ingold-Prelog rules, designate the configuration of stereocenters of the following compounds, (E) - (G).

(12 marks)

- (c) A synthetic sample of ibuprofen showed specific rotation, $[\alpha]_D = +24.6^\circ$. $[\alpha]_D$ of (+)(S)-Ibuprofen is $+61.5^\circ$.
 - (i) Calculate the percent optical purity of (+)(S)-ibuprofen in the sample.
 - (ii) Calculate the percentages of (S) and (R)-ibuprofen in the sample.
 - (iii) How would you attempt to separate (S) and (R)-ibuprofen from the above synthetic sample using a chemical method?

$$(+)(S)$$
-ibuprofen $(-)(R)$ -ibuprofen (20 marks)

(d) Predict the expected products of any **TWO** (02) of the following reactions. Give the mechanism for the formation of the predicted products.

(ii)
$$CH_3$$
 CH_2O

$$CH_3CCH=CH_2$$

$$CH_3CCH=CH_2$$

$$CH_3$$

(20 marks)

(e) Indicating the mechanism predict the product formed, with its stereochemistry, when *cis*-2-butene is reacted with bromine.

(20 marks)

- (f) Explain ONE (01) of the following observations.
 - (i) Reaction of an optically pure 1-chloro-1-phenylethane with water results in 98% racemization (2% net inversion) while the reaction with NaOH in DMSO results in 100% inversion to give 1-phenyethanol.

1-chloro-phenylethane

(ii) Neomenthyl chloride when reacted with sodium ethoxide in ethanol **readily** produces 2-menthene and (25%) 3-menthene (75%), while menthyl chloride **slowly** but **exclusively** gives 2-menthene under the same conditions.

2. (a) Explain why the carbonyl stretching frequency of methyl benzoate occurs at 1724 cm⁻¹ while that of methyl salicylate occurs at 1680 cm⁻¹.

(15 marks)

(b) Calculate the expected UV λ_{max} of compound A using Woodward-Fieser rules for α,β -unsaturated ketones.

Basic value for α,β -unsaturated ketone = 215 nm Increments;

Double bond extending conjugation +30 nm Exocyclic double bond +05 nm

Alkyl group or ring residues at:

 $\begin{array}{ccc} \alpha - \text{position} & +10 \text{ nm} \\ \beta - \text{position} & +12 \text{ nm} \\ \gamma \text{ or higher position} & +18 \text{ nm} \\ \text{Homoannular component} & +39 \text{ nm} \end{array}$

(10 marks)

(c) The ¹H NMR spectrum of compound C, (C₉H₁₀O₃) and some useful expansions are given below. It showed an absorption band at 1725 cm⁻¹ in its IR spectrum among other peaks while no peaks were observed above 2900 cm⁻¹. Deduce the structure of C.

(40 marks)

- (d) (i) Predict the number of signals, area ratios and multiplicities of the signals in the ¹H-NMR spectrum of E.
 - (ii) Sketch the ¹H-NMR spectrum of E, showing relative positions of peaks from TMS.
 N.B. δ values of peaks are not expected
 - (iii) Draw the structures of the fragments responsible for the peak at m/z = 71 and m/z = 43 in the mass spectrum of compound E.

$$H_3C$$
 \bigcirc $CH-C-OCH_2CH_3$ H_3C \to E

(35 marks)

3. (a) Give the structures of the products (W - Z) formed in the following reactions.

i. ,
$$CH_2OH$$
 PCC CH_2CI_2 W

iv.
$$CH_3CHO$$
 \longrightarrow 1. NH_3 \longrightarrow Z 2. H_2/Ni

(20 marks)

(b) Giving necessary reagents and conditions show how you would carry out any **TWO (02)** of the following multi-step conversions.

(40 marks)

(c) Provide mechanisms for any TWO (02) of the following conversions.

i
$$Me$$
 $+$ CF_3CO_3H Me Me Me Me

iii.
$$C_2H_5OC_2H_5$$
 HBr C_2H_5Br

(40 marks)

4. (a) Predict which of the following compounds shows aromatic properties. Explain your answer!

(30 marks)

(b) Give an example of a nucleophilic substitution reaction of p-nitrochlorobenzene. Give the structures of the intermediate ions and explain why p-nitrochlorobenzene is more reactive than the m-isomer.

(25 Marks)

(c) Giving necessary reagents and reaction conditions indicate how you would effect any THREE (03) of the following conversions.

N.B. Conversions may involve more than one step.

(i)
$$H_{3}C$$
 $H_{3}C$ $H_{3}C$

(iii)
$$O_2N$$
 $CH_2CH_2CH_3$

(45 Marks)

Copyrights reserved