

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc/ B.Ed DEGREE PROGRAMME/ STAND ALONE COURSES IN SCIENCE

FINAL EXAMINATION- LEVEL 4- 2012/2013

CHU 2125/ CHE 4125- ANALYTICAL CHEMISTRY

(2 hours)

Monday 17th June 2013

1.00 p.m. - 3.00 p.m.

ANSWER ANY FOUR QUESTIONS.

IF MORE THAN FOUR QUESTIONS ARE ANSWERED, **ONLY THE FIRST FOUR ANSWERS WILL BE MARKED.**

- 1. (a) Distinguish between the terms in each of the following pairs:
 - (i) Accuracy and precision
 - (ii) Random error and systematic error

Comment on the statement, "Systematic error affects the accuracy but not the precision". (40 marks)

(b) Six samples were randomly taken from a limestone deposit, each was digested with dilute acid and after adding a suitable buffer, 50.00 cm³ of the digested solution was titrated with 0.02 M EDTA to determine the concentration of Ca²⁺.

The following results were obtained.

The following results were obtained:								
	Volume (cm ³) of	26.05	26.10	26.15	26.05	27.10	26.15	
	0.02 M EDTA							

- (i) What is a random sample? Suggest a method that would have been followed when taking random samples from this ore.
- (ii) If the true concentration of Ca^{2+} in the digested solution was 400 ppm, calculate the equivalence point (Ca = 40).
- (iii) Is there a systematic error in the set of results? Explain your answer with proper calculations.
- (iv) Check statistically whether there is/are any outlier/s in this set of results at 96% confidence level. (for n = 6, Q=0.64; for n = 5, Q=0.73).
- (v) Suggest a method to minimize the random error. (60 marks)
- 2. (a)(i) Write the conditions that must be satisfied by a reaction for it to be used in classical titrimetric methods.
 - (ii) Write, with an example in each case, a brief description of indirect titration and back titration methods. (35 marks)

- (b)(i) Derive the expression for the pH of a buffer that consists of a mixture of weak acid HA (dissociation constant K_a) and its conjugate base A^- .
 - (ii) Calculate the mass of NaA you need to add to 0.5 dm³ of 0.1 mol dm⁻³ solution of HA to make up a buffer solution of pH 7.5.
 For HA, pK_{a1} is 7.1; the relative molecular mass of NaA is 100. (35 marks)
- (c)(i) Derive the expression for the dissociation constant (K_{HIn}) of the indicator HIn, in terms of concentrations of HIn, H⁺ and In⁻.
 - (ii) The acid base indicator bromocresol green is a weak acid. The yellow acid form and the blue base form of the indicator are present in equal concentrations in a solution when pH is 4.68. What is the pK_a for bromocresol green? (30 marks)
- 3. (a)(i) What is meant by the solubility product of a sparingly soluble compound?
 - (ii) The solubility product (K_{sp}) at 38°C of lead phosphate, $Pb_3(PO_4)_2$ is $3.0x10^{-44} \text{ mol}^5 \text{ dm}^{-15}$. Calculate the molar solubility of lead phosphate at 38 °C.
 - (iii) Predict whether or not a precipitate will be formed when 10.0 cm^3 of 0.03 mol dm^{-3} Pb(NO₃)₂ solution is mixed with 20.0 cm^3 of $0.006 \text{ mol dm}^{-3}$ NaCl solution. K_{sp} for PbCl₂ is 1.6×10^{-5} mol³ dm⁻⁹. (40 marks)
 - (b) **Briefly** explain how each of the following experimental procedures will affect the quality of precipitate for gravimetric analysis.
 - (i) Carrying out the precipitation reaction at an elevated temperature
 - (ii) Precipitation from homogeneous solution (PFHS)
 - (iii) Rapid addition of reagent

(60 marks)

- 4. (a) Write down the Gibb's phase rule and identify the terms in it. Calculate the number of degree of freedom for the following:
 - (i) A mixture of liquid and vapour phases of a component
 - (ii) A system in which ice and water are in equilibrium.

(30 marks)

- (b)(i) Identifying the terms, write the mathematical expressions for 'volatility' (v) of a component and 'relative volatility' (α) for a mixture of two components. Write the expression for α in terms of vapour pressures of components.
 - (ii) Defining the terms distribution coefficient K_D and distribution ratio D_C , write down expressions for K_D and D_C for benzoic acid in a mixture of water and toluene. Assume that in toluene, benzoic acid exists as a dimer. (50 marks)
- (c)(i) When a compound dissolved in the aqueous layer is extracted into an organic layer, the fraction remained in the aqueous layer after n^{th} extraction, f_n is given by

$$f_{n} = \left[\frac{V_{w}}{V_{w} + D_{C}V_{O}} \right]^{n}$$

A compound X dissolved in 50 cm^3 of aqueous layer is extracted four times, using 12.50 cm^3 ether each time for extraction. D_C is given as 50. Calculate the fraction of solute remained after the 4^{th} extraction. (20 marks)

5. (a) Using the standard notations, write down the Nernst equation and the expression for the equilibrium constant for the chemical reaction,

$$aA + bB == cC + dD$$

(20 marks)

- (b) The titration of 100 cm 3 of 0.05 mol dm $^{-3}$ Fe $^{2+}$ solution with a 0.10 mol dm $^{-3}$ Ce $^{4+}$ solution in 1 mol dm $^{-3}$ HClO $_4$ was monitored potentiometrically. The standard electrode potentials for the redox couples Fe $^{3+}$ /Fe $^{2+}$ and Ce $^{4+}$ /Ce $^{2+}$ are +0.767 V and +1.70 V respectively.
 - (i) Write down the balanced equation for the redox titration.
 - (ii) Write down the expression for E_{cell}, using the Nernst equation.
 - (iii) The equivalence point of the titration occurs when the volume of Ce⁴⁺ added was 50.00 cm³. Derive an expression for the potential at equivalence point of the titration.
 - (iv) Calculate the cell potential when 36.0 cm³, 50.0 cm³ and 64.0 cm³ of Ce⁴⁺ is added to the Fe²⁺ solution.
 - (v) Comment on the E^o_{In} value of a suitable redox indicator that could be used to get an error-free equivalence point. (80 marks)
- 6. (a)(i) Write down **two** advantages of conductometry as compared with titrimetry.
 - (ii) The SI unit of conductance is Siemens (S). Express a Siemen in terms basic SI units.
 - (iii) The resistance of a voltmeter is $3.0 \times 10^{10} \Omega$; it read 1.5 V, when it was used to measure the potential of a cell. What was the current (in amperes) that passed during the measurement? (30 marks)
 - (b) Sketch the conductometric titration curve for a titration of weak acid vs. strong base (titrant). Indicate the equivalence point. (20 marks)
 - (c)(i) Briefly explain why atomic absorption spectroscopy (AAS) is regarded as both a specific method and a sensitive method..
 - (ii) Briefly describe the important function(s) of atomizer, modulator and Hollow Cathode Lamp (HCL) (50 marks)

3