

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. & B. Ed. DEGREE / STAND ALONG COURSE IN SCIENCE - LEVEL 5 ASSIGNMENT TEST II (NBT) 2012/2013

CMU3122/CME5122 - Organometallic Chemistry

28 th February 2013 (Thursday)	4.00 - 5.30 p.m.

ANSWER ALL QUESTIONS

Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted.

PART A (60 marks)

- 1. Consider the following statements about [Fe(CO)₅].
 - (i) It shows the trigonal bipyramidal geometry in the solid state.
 - (ii) It can be prepared by reacting iron with CO at high temperatures and pressures.
 - (iii) It reacts with NaH to give Na[FeH(CO)₅].

The correct statement/s is/are

- 1) (i) only
- 2) (i) & (ii) only
- 3) (i) & (iii) only

- 4) (ii) & (iii) only
- 5) (i), (ii) & (iii).
- 2. Pick the correct statement regarding an oxidative addition reaction.
 - 1) Oxidative addition of coordinated dihydrogen is trans.
 - 2) Oxidative addition is facile if the metal centre is coordinatively saturated.
 - 3) Coordinatively saturated metal centres cannot undergo oxidative addition reaction.
 - 4) Coordination number of the metal is always increased by 2 units.
 - 5) None of the above statements is true.
- 3. Electrophilic attack on a coordinated ligand is facilitated if
 - 1) the metal is in a higher oxidation state.
 - 2) the metal is coordinatively unsaturated.
 - 3) the metal coordinated to good σ -donor ligands.
 - 4) the metal is positively charged.
 - 5) electron withdrawing groups are on coordinated ligands.
- 4. Consider the following statements regarding reductive elimination.
 - (i) Coordination number of the metal is reduced by two units.
 - (ii) It is facile if the metal centre is positively charged.
 - (iii) Coordinatively saturated compounds prefer to undergo reductive elimination.

The correct statement/s is/ are

- 1) (i) only.
- 2) (i) & (iii) only.
- 3) (i) & (ii) only.

- 4) (ii) & (iii) only.
- 5) (i), (ii) & (iii).
- 5. What is the most stable product formed, when [Fe(CO)₅] is reacted with 1,3-butadiene (C₄H₆)?
- 2) [Fe(CO)₃(η^4 –C₄H₆)]
- 3) [Fe(CO)₅(η^2 -C₄H₆)]

- 1) [Fe(CO)₄(η⁴-C₄H₆)] 4) [Fe(CO)₂(η⁴-C₄H₆)₂]
- 5) $[Fe(CO)_3(\eta^2-C_4H_6)]$

				•
	6. γ-Agostic (gamma agostic) interac 1) [MeMn(CO) ₅] 3) [Mn(CF ₂ CF ₂ Me)(CO) ₄] 5) None of the above	tion could be seen in 2) [(OC) ₃ Pt{ 4) [MeOMn		
3	7. Which one is an example of an rec	luctive elimination reac	tion?	
·	1) [Fe(CO) ₅] + CF ₂ =CF ₂ 2) [(η ³ -C ₃ H ₅)PtMe(CO) ₂] 3) [Fe(CO) ₅] + 2 CF ₂ =CF 4) [Pt(Ph)(H)(PPh ₃) ₂] + 2 5) [MeMn(CO) ₅] + CF ₂ =C	$ \rightarrow [(OC)_4 Fe(CF_2 = CF_4)] $ $ \rightarrow [(\eta^3 - C_3 H_6) Pt(CO)(C_2)] $ $ \rightarrow [(OC)_4 Fe(C_4 F_8)] $ $ PPh_3 \rightarrow [Pt(PPh_3)_4] + $	2)] + CO COMe)] + CO C ₆ H ₆	
· .	8. Which statement is not true about 1) The IUPAC name is trica	[Fe(PPh ₃) ₂ (CO) ₃]?	nhinalina	
	2) CO is a good π -acceptor	ligand.	piline)iron.	
•	3) It shows only two geome	trical isomers.		
· .	 4) The coordination number 5) The ν(CO) of [Fe(PPh₃)₂) 		t of KTFe(PPh-)-(CO)-1	
•		•	t of K[1 o(1 1 h3)2(CO)3].	
	9. Consider the following statements(i) CH₂=CH₂ is a weaker π-	regarding ligands,	Th.c	-
	(ii) PMe ₃ is a better σ-donor		iivie,	
	(iii) CO is a better π-acceptor		igand.	
•	The correct statement/s is/are 1) (ii) only.	2) (i) & (ii) only.	3) (ii) & (iii) only.	
	4) (i) & (iii) only.	5) (i), (ii) & (iii).	5) (ii) & (iii) dilly.	
	10. What is the product formed, whe 1) Na[Fe(CO) ₄] 3) Na[Fe(CO) ₄ {C=O)H}] 5) Na[Fe(OH)(CO) ₅]	n [Fe(CO) ₅] is reacted w 2) Na[FeH(CO) ₄] 4) [FeH ₂ (CO) ₄]	ith NaOH?	
	11. Consider the following statements			
	(i) Dihydrogen is a weaker			
•	(ii) $v(M-D) \times \sqrt{2} = v(M-H)$	I)		
	(iii) The oxidative addition o the back donation. The correct statement/s is/are	f coordinated H ₂ depends	on the strength of	
	1) (i) only.	2) (i) & (ii) only.	3) (ii) & (iii) only.	
	4) (i) & (iii) only.	5) (i), (ii) & (iii).		
			c-[Mo(PCl ₃) ₃ (CO) ₃]? 90 & 1650	
	13. Consider the following statements	about metal carbonyls		
	 (i) Back bonding weakens th (ii) Back bonding increases th (iii) CO stabilizes the metal ce The correct statement/s is/are 	e CO bond strength. ne M–C bond strength. enters in higher oxidation	states.	·
	1) (i) only. 4) (i) & (iii) only.	2) (i) & (ii) only. 5) (i), (ii) & (iii).	3) (ii) & (iii) only.	
				•
		2		

14. Which metal carbonyl has got 1) [Os ₃ (CO) ₁₂] 2 4) [Re ₂ (CO) ₁₀] 5	bridging carbonyl liga) [Ir ₄ (CO) ₁₂]) [Fe ₃ (CO) ₁₂]	ands? 3) [Ru ₃ (CO) ₁₂]
15. The nucleophilicity of the R ⁻ at 1) LiR > NaR > 2) LiR > NaR > 3) NaR > LiR > 4) NaR > LiR > 5) HgR ₂ > RMgX >	RMgX > HgR2 HgR2 > RMgX HgR2 > RMgX RMgX > HgR2	owing order,
 16. Most likely reaction that would have a constant of the second of th	Ii(CO) ₅] MeTiCl ₃ + AlClM → Na[(η^3 -C ₅ H ₅)M O → [Mn(COCF ₃)((o(CO) ₄] + 2 CO (CO) ₅]
17. Which statement is not true a 1) There are three bridgi 2) It can be prepared by 3) There is a Fe-Fe bond 4) Fe centre does not ob 5) Fe is a Group 8 metal	ing carbonyl ligands. photochemical irradiated in the complex. ey 18e rule.	ion of [Fe(CO)₅].
18. Consider the following statem (i) It is a H ⁺ donor. (ii) It is a weaker acid that (iii) It shows a negative post the correct statement/s is/are 1) (iii) only. 2 4) (ii) & (iii) only.	an [HCo(CO)₃(PPh₃)]. proton chemical shift (in g	l. n ppm) with respect to SiMe ₄ (TMS). 3) (i) & (ii) only.
	a bidentate ligand). ral geometry. rbonyl band in its IR sporeacting [W(CO) ₆] with re (2) (i) & (ii) only.	ectrum.
		$S(CO)_5] + I_2 \rightarrow ?$ 3) $[OsI_2(CO)_5]$

THE OPEN UNIVERSITY OF SRI LANKA
B. Sc DECREE PROGRAMME 2012/2013
CMU3122/CME5122 - ORGANOMETALLIC CHEMISTRY- LEVELS
ASSIGNMENT TEST-II (Part A)

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

															1	Part 1	A.		
Reg	g, No). [•		F	or :	Exa	mine	rs (Jse			Part l	В		_
		l		-											ī	otal	%.		_
												Λ	⁄larks	•		•	·		_
					[Corre	eat Ans	wers											
	٠				¥	Trong	Answe	ers										•	
	•					[ota]	<u>L</u>			· .									
	•			·			·		. •						- -	•			
	1.	1	2	3	4	5	2.	1	2	3	4	5	3	. [1	2	3	4	5	į
	4.	1	2	3	4	5	5.	1	2	3	4	5	6	1	2	3	4	5	
	7.	1	2	3	4	. 5	8.	1	2	3	4	5	.9	. [1	. 2	3	4	5	
	10.	1	2	3	4	5	11.	1.	2	3	4	5	12	. [1	. 2	3	4	5	,
				l			. .			<u> </u>	4	5	15	. [1	. 2	3	4	, 5	
	13.		2	3	4	5	14.	1	2	3	4	5	12	. [_		۲ ا			
	16.	1	2	3	4	5	17.	1	2	3	4	5	18	. [1	. 2	3	4	5	
	19.	1	i 2	13	4	5	20.	1	2	3	4	5							

Part B (40 marks) Answer the questions	in the space provided.	Attached sheets will	not be graded.	
$(dppe = PPh_2)$	undergoes oxidative ad CH ₂ CH ₂ PPh ₂) cular formula of (Z) .	1 No.		
(ii) Draw and id	entify the two isomers	of (Z).	•	
				•
	•			
	•			
to give the complete Identify (P), (Q) and	imer [(η ⁵ -Cp)Fe(CO) ₂ ex (Q) and KBr. (Q) in nd (R).	the presence of CC	alt (P), which real of gives the acyl c	omplex (R).
(P)		(Q)	•••••	•••••
(R)	······································		•	
		***		,
Rh(I) complex (A)	ex [(OC) ₃ RhOCH ₂ CH ₂ 0 and organic molecule . Identify (A), (B) and	(B). Upon heating (A	dride abstraction A) with CH ₂ =CH ₂	to give the gives the
(A)		(B)		

(d) How would you account for the variation in v(CO) of the following compounds?

Compound v(CO) in cm⁻¹

Free-CO 2143

 $[Mo(CO)_6]$ $[Mo(CO)_6]$ 2005 2090

(C)

(e) What is meant by "cyclometallation"? Give an example (a reaction).

- 2. (a) Predict the product(s) of the following reactions using the hint given in the brackets.
- (i) $[Mn(\eta^1-CH_2CH=CH_2)(CO)_5]$ Δ (dissociation & coordination)
- (ii) $2 [Co(CN)_5]^{3-} + MeI \rightarrow$ (1e-oxidative addition)
- (iii) [Ru(PMe₃)₄] + 2 MeC≡CMe →(oxidative coupling)
- (iv) [Fe(CO)₅] + LiMe → (nucleophilic attack on a coordinated ligand)
- (v) $[(\eta^5-C_5H_5)W(CO)_3(\eta^1-CH_2CH=CH_2)] + HCI \rightarrow$ (electrophilic attack on a coordinated ligand)
- (b) Write on the dotted line, the reagent(s) which can be used to carry out the following conversions.
 - a. $[CoBr(PMe_3)_3] \rightarrow [CoPh(PMe_3)_3]$
 - b. $K[Re(CO)_5] \rightarrow [Re(COMe)(CO)_5]$ -----
 - c. $trans-[W(CO)_4(PPh_3)_2] \rightarrow [WBr_2(CO)_3(PPh_3)_2]$ -----
 - d. $[(\eta^5-C_5H_5)Rh(PPh_3)(CO)] \rightarrow [(\eta^5-C_5H_5)Rh(Me)(PPh_3)(CO)]I$ -----
 - e. $[CoH(PMe_3)_3] \rightarrow [Co(Et)(PMe_3)_3]$ -----

- - (i) [Mn(η³-CH₂CH=CH₂)(CO)₄] + CO

roundena corre

turni di col

双面面是350.001.106671

的复数形式 计选择的

(a) (a)

(5) 81

(ii) $[Co(Me)(CN)_5]^{3^{-1}}$ + $[CoI(CN)_5]^{3^{-1}}$

- (iv) Li[Fe(CO)₄(COMe)]
- (v) $[(\eta^5-C_5H_5)(CO)_2W(\eta^2-CH_2=CHMe)]Cl$
- (b) (i) NaPh or LiPh
 - (ii) MeCOX (X = Cl, Br, I)

400)4604A = 101

- (iii) Br₂/CCl₄ (colored)
- (iv) MeI
- $\begin{array}{lll} \text{(v)} & \text{CH}_2\text{=CH}_2 & \text{(i)} & \{\text{(constablished in)} + \text{(b)} & \{\text{(constablished in)} + \text{(constablished in)} \} \\ \end{array}$

(ii) There is an head head the viters CoO hand is what is a head liberalist at the second second water in the indeathpart is equally a COO his the county as electrical to the area are also be of the county of t

OHOROSEC = TES

To radiavitas at autobamais delared Debbaras a andar excepta e el matello ereda (Deb). El Mal Re usagnorada els rese, que hasyst tobado con el el breal NeD e el ED e

The Open University of Sri Lanka B.Sc. Degree Program 2012/2013 CMU3122/CME5122 – Organometallic Chemistry - Level 5 Assignment Test - II Answer Guide

Part	Δ _	MCO	ANSW	ZERS
IMIL	<u>~</u>	MUCO	AUTOT	

1. (2)	2. (5)	3. (3)	4. (5)	5. (2)
6. (3)	7. (4)	8. (3)	9. (3)	10. (2)
11. (5)	12. (1)	13. (2)	14. (5)	15. (4)
16. (2)	17. (4)	18. (2)	19. (3)	20. (4)

Part B

(1)(a)(i) [PtI₃(Ph)(dppe)]

(b) (P) =
$$K[(\eta^5 - C_p)Fe(CO)_2]$$
 (Q) = $[(\eta^5 - C_p)Fe(Ph)(CO)_2]$ (R) = $[(\eta^5 - C_p)Fe(COPh)(CO)_2]$

(c) (A) =
$$[RhH(CO)_3]$$
 (B) = CH_3CH_2CHO (C) = $[Rh(Et)(CO)_3]$

- (d) There is no back donation when C≡O is not bonded to a metal therefore it shows the highest frequency. v(CO) is directly proportional to the strength of C≡O bond. [Mo(CO)₆] has a lower frequency than that of [Mo(CO)₆]⁺ because back donation in the cation complex is lower due to low electron density on the metal. Therefore the C≡O bond strength of [Mo(CO)₆]⁺ is higher than that of [Mo(CO)₆], as Mo in [Mo(CO)₆] has a higher back donation ability.
- (e) Cyclometallation is a process where a new M-C bond is formed due to activation of a C-H or C-X bond in a coordinated ligand. e.g., see the cover page of Unit II

$$[Fe(PMe_3)_4] \qquad \xrightarrow{\Delta} \qquad Me_3P_{\text{in}} PMe_3 \\ Me_3P \qquad Fe^{\text{in}} PMe_2$$