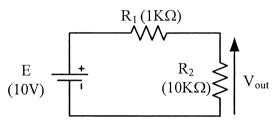
## The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX3150 – Electronics I




Final Examinations – 2014/15 (Closed Book)

Date: 07.08.2015 Time: 09.30 – 12.30

Answer any five questions.

- 1. Figure 1 shows a resistor network circuit.
  - a. Name the theory/method you can use to calculate the output voltage ( $V_{out}$ ) in figure 1. [2 marks]
  - b. Calculate the voltage across the load (R<sub>2</sub>), using the method you mentioned in (1.a.) [3 marks]



- Figure 1
- c. A student needs to maintain a constant voltage of 9V across the load R<sub>2</sub>, what are the modifications that you suggest for the circuit shown in figure 1 using discrete component?
- d. Re draw the circuit using the suggested component in (1.c). [4 marks]
- e. Calculate the current through the R<sub>2</sub>. [3 marks]
- f. Calculate the voltage/ power ratings for the components that you suggest in part (1.c.). [8 marks]

2.

a. Simplify the following functions using Boolean algebra

i. 
$$F_I = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$
 [3 marks]

ii. 
$$F_2 = \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + \overline{A}BCD + AB\overline{C}D + ABCD$$

[4 marks]

b. Convert the following

|      | C                                   |           |
|------|-------------------------------------|-----------|
| i.   | 26.3 <sub>10</sub> to binary        | [2 marks] |
| ii.  | 18.6 <sub>10</sub> to octal         | [2 marks] |
| iii. | 20.745 <sub>10</sub> to hexadecimal | [3 marks] |
| iv.  | -31 to two's compliment             | [2 marks] |
|      |                                     |           |

c. Add two binary numbers, 0110 + 0011 [2 marks]

d. Divide 100011<sub>2</sub> by 101<sub>2</sub>

[2 marks]

3.

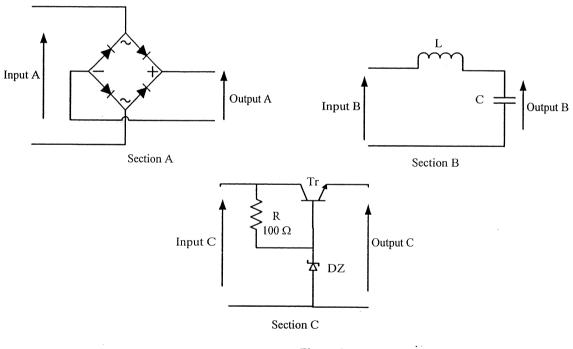
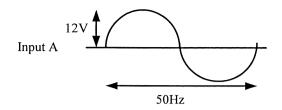
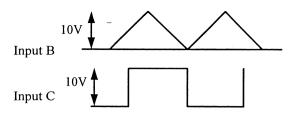
- a. Write the truth table for NAND, NOR and XOR gates. [3 marks]
- b. Simplify the following logic function using Karnaugh map.

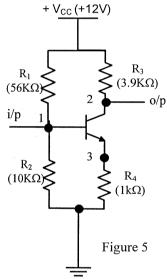
i. 
$$f(A, B, C, D) = (1,5,9,10,11,13,14,15)$$
 [4 marks]

ii. 
$$f(A, B, C, D) = (0,1,2,5,6,7,8,9)$$
 [4 marks]

c. Implement the Simplified logic function obtained in

4. Sections of stabilized power supply unit are given in figure 4. All the diodes have 0.7 V forward voltages. Transistor base emitter voltage is 0.7V and current gain is 50. Zener diode voltage and the max. power dissipation are 5.7V and 0.25mW respectively.



Figure 4

- a. Name each section and write the operation of each section. [6 marks]
- b. Different inputs are feed to each section. Draw the output with reference to the input signal. [6 marks]





- c. Design a linear power supply unit using the given sections given in figure 4. [2 marks]
- d. Calculate,
  - i. output voltage of the linear power supply unit. [2 marks]
  - ii. maximum output current for this linear power supply unit.[4 marks]
- 5. A single stage transistor amplifier is given in figure 5. Si Transistor has a high current gain.



- a. Name the configuration of the circuit shown in figure 5. [2marks]
- b. Calculate the test point voltages 1, 2, 3. [5marks]
- c. Draw the D.C load line of the amplifier. Clearly state necessary calculations. [8 marks]
- d. According to your knowledge state the best Q point position and any modification to the amplifier design to achieve the best Q point. [5 marks]

6.

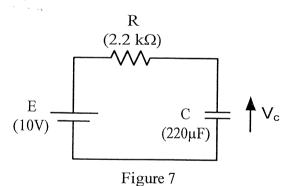

- a. Write four characteristics of an operational amplifier. [4 marks]
- b. An operation amplifier circuit shown in figure 6.



Figure 6

- i. Derive a function with an input output relation. [6 marks]
- ii. Name the operation of the design in figure 6, using the derived function in 6.b.i [3 marks]
- iii. Calculate the output signal, if the following signals are given to the input.  $V_1=2$  V,  $V_2=5$  V,  $V_3=1$  V signal. [3 marks]
- iv. Draw the output signal indicating necessary parameters of the signal.

  [4 marks]
- 7. An experiment is set up to observe the transient response of a capacitor. The circuit is shown in figure 7.



- a. Derive an expression for V<sub>c</sub> of the circuit shown in figure 7.
- [5 marks]

b. Calculate the voltage of the capacitor at t = 0.5s

- [3 marks]
- c. After 4 s battery was replaced with a switch. Explain the behavior of the capacitor when the switch is on. [4 marks]
- d. If the switch is replaced by a sinusoidal voltage source with 10V peak voltage,
  - i. Explain the voltage variation of the capacitor. [4 marks]
  - ii. Draw the output signal (voltage across capacitor) with reference to the input signal. [4 marks]

a. Write down the advantages of Field effect transistors over bipolar transistors.

[04 marks]

b. Consider the circuit shown in figure 7.  $I_{DSS}$  and pinch off voltage of the JFET is 12mA and -3V respectively.

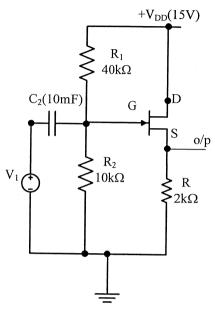



Figure 7

- i. What is the amplifier configuration used in this circuit? [02 marks]
- ii. Find the gate source voltage, when no input signal is applied.

[10 marks]

iii. Hence find the Drain current of the channel.

[04 marks]