The Open University of Sri Lanka
B.Sc./B.Ed. Degree Programme – Level 05
Final Examination – 2006/2007
Pure Mathematics
PMU 3292/PME 5292 – Group Theory & Transformation – Paper I

Duration:- Two and Half Hours

Date: 03-11-2006

Time: 9.30 a.m. - 12.00 noon.

Answer Four Questions Only.

- 01. (a) Prove that the set G of all matrices $A\alpha = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$, $\alpha \in R$, together with matrix multiplication is an abelian group.
 - (b) Show that the members of each of the following operation table form a group:

*	1	3	-5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

*	а	b	с	d
а	а	b	С	d
b	b	а	d	с
с	с	d	b	а
d	d	с	а	b

- 02.(a) If (G, *) is a group then prove that x = e is the unique solution of the group equation x * x = x.
 - (b) Given that $a^2 = e$ for every element a of the group (G, *). Show that the group G must be commutative.
 - (c) Prove that a group (G, *) is commutative if and only if $(a * b)^{-1} = a^{-1} * b^{-1}$.
- 03. Let M be the set of all 2×2 non-complex matrices with matrix multiplication as binary operation. Determine which of the following subsets are groups: Justify your answers.
 - (a) The subset of all real matrices with only positive real numbers as entries.
 - (b) The subset of all matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with $ac \neq 0$.
 - (c) The subset of all matrices of form $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ with $bc \neq 0$.
 - (d) The subset of all matrices of the form $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$.

- 04.(a) Show that $H=\{3n|n\in\mathbb{Z},n\geq0\}$ is not a subgroup of the group $(\mathbb{Z},+)$.
 - (b) Let (R, +) be the additive group of all real numbers and the set $H = \{x \mid 0 < x < 1\}$. Show that H is not a subgroup of (R, +).
 - (c) If H is a subgroup of a group G, then prove that aHa^{-1} is a subgroup of G for some $a \in G$.
- 05.(a) G is the group of 2×2 complex non-singular matrices with matrix multiplication as the binary operation defined on G. Find the order of each of the following elements.

 - (i) $\begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$ (ii) $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.
 - (b) Find the order of 3 of the group of non-zero integers modulo 5 under the operation ⊙5.
 - (c) If (G, *) is a group and $a \in G$, then prove that $O(a^{-1}) = O(a)$, where O(a) is the order of element a.
- 06.(a) If a is the generator of the cyclic group $\langle G, \cdot \rangle$, then prove that a^{-1} is also its generator.
 - (b) Which of the following groups are cyclic? List the generators of the cyclic groups.
 - (i) (Z, +)
- (ii) (Q, +)
- (iii) (Q^+, \cdot)
- (iv) (6Z, +)
- (v) $\{6^n \mid n \in Z\}.$