The Open University of Sri Lanka Faculty of Engineering Technology

Study Programme

Bachelor of Technology Honours in Engineering

Name of the Examination

Final Examination

Course Code and Title

: MEX3235 Thermo- Fluids

Academic Year

: 2014/15

Date

9th September 2015

Time

1330 -1630hrs

Duration

3 hours

General instructions

1. Read all instructions carefully before answering the questions.

2. Answer **five questions** selecting at least **two questions from each of section 1 and section 2.** All questions carry equal marks.

3. You may obtain tables of Thermodynamic and transport properties of fluids on request.

4. Density of water 1000 kg/m³. Acceleration due to gravity = 9.81 m/s². For air C_p = 1.005 kJ/kgK, C_v = 0.718 kJ/kgK R = 0.287 kJ/kgK γ = 1.4

SECTION 1

1 a State the first Law of Thermodynamics and write down the non-flow energy (03 marks) equation which represents a corollary First Law.

b Define following terms.

(03 marks)

i

work done

ii enthalpy

iii entropy

c A system exists with $0.3~\text{m}^3$ of gas at 5 bar and 450 K. It is expanded adiabatically to 1 bar. The gas is then heated at constant pressure till its enthalpy increases by 100 kJ. Take C_p and C_v for gas as 1 kJ/kgK and 0.712 kJ/kgK respectively.

i Draw the processes on P-V or T-S diagrams.

(01 marks)

ii Calculate characteristic gas constant (R) in J/kgK and ratio of specific

(02 marks)

heat capacities (y)

iii Determine mass of the gas

(01 marks)

iv Calculate final temperature and volume of the gas

(04 marks)

v Find work done during adiabatic expansion process

(02 marks)

vi Find work done and entropy change during constant pressure heating process.

(04 marks)

2	а	State the processes of Otto cycle and sketch them on T-S and P-V diagrams. Derive the expression for efficiency.	(08 marks)
	b	A petrol engine of a vehicle work on Otto cycle with a compression ratio 7.5. Pressure and temperature of air at the entry to cycle are 1 bar and 300 K respectively. If the temperature of air after expansion is 600 K, Calculate the	
		 i thermal efficiency of the cycle. ii maximum pressure. iii maximum temperature. iv net work done per kg of air. v stroke volume. vi mean effective pressure. 	(02 marks) (02 marks) (02 marks) (02 marks) (02 marks) (02 marks)
3	а	Steam is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 80 bar and saturated liquid exits the condenser at a pressure of 0.08 bar. The net power output of the cycle is 100 MW.	
		Determine for the cycle i dryness fraction of steam after expansion process. ii pump work. iii thermal efficiency. iv mass flow rate of the steam.	(04 marks) (04 marks) (04 marks) (04 marks)
	b	if the expansion stage has an isentropic efficiency "y" and neglecting the pump work, show that the thermal efficiency (η) is given by $\eta = 0.373 \ y$	(04 marks)
4	Ans a	In oil cooler for a diesel engine 0.2 kg/s of oil is to be cooled from 130°C to 70°C in a double pipe heat exchanger with 0.2 kg/s of water available at 30°C. The overall heat transfer coefficient is 400 W/m² K. The specific heat capacities of oil and water are 2131 J/kgK and 4176 J/kgK	
		respectively. Determine the effective surface area for heat transfer, i if the flow is parallel in the same direction.	(12 marks)
	b	Hot water flows in a steel tube of which inner and outer radii are 25 mm and 40 mm. The temperature of the water at a particular location is 300°C. The pipe is surrounded by air at 30°C. The convective heat transfer coefficients at the inner and outer surfaces are 1500 W/m²K and 6 W/m²K. The thermal conductivity of steel is 40 W/mK.	(08 marks)
		Determine the heat transfer rate per meter length.Find the temperature at the outer surface of the tube.	(15 marks) (05 marks)

SECTION 2

5 a Benzene at 200°C has a viscosity 0.00651 Pa.s. What shear stress is required to deform this fluid at a strain rate of 4900 s⁻¹?

(05 marks)

b Multi compartment vessel is filled with water and oil (specific gravity of 0.9) as shown in Fig. Q5(b). Calculate the gauge pressure in kPa, at A, B, C and D?

(07 marks)

c Cross sectional view of Dam ABC in Fig. Q5(c) is 38 m wide and made out of concrete. Find the hydrostatic force on surface BC.

Fig. Q5(c)

(08 marks)

6 a State Bernoulli's equation and identify each parameter with their SI units.

(05 marks)

b Water flows at 0.36 m³/s in a pipe as shown in Fig. Q6(b). The pipe diameters are 360 mm and 240 mm as shown in the figure. The control volume of ABCD bend is 0.14 m³. The pressure at the entrance is 73 KN/m² and the exit is 2.4 m above the entrance section. Find the force exerted on the bend.

(15 marks)

Page 3 of 4

For the flow situation shown in Fig.Q7 determine the ratio $\frac{h_{\rm l}}{h_{\rm 2}}$ if the area ratio

$$\frac{A_1}{A_2} = 1.8$$

8 A pump is 2.2 m above the water level in the sump and has a pressure of - 200 mm of mercury at the suction side as shown in Fig.Q8. The suction pipe is of 200 mm diameter and the delivery pipe is a 250 mm diameter pipe ending in a nozzle of 80 mm diameter. If the nozzle is directed vertically upwards at an elevation of 4.2 m above the water sump level, Determine:

- i Discharge.
- ii Power of the pump
- Elevation above the water sump level, to which the jet would reach
- (05 marks)
- (10 marks)
- (05 marks)

All Rights Reserved