

The Open University of Sri Lanka Faculty of Engineering Technology

Study Programme : Bachelor of Technology (Engineering)

Name of the Examination : Final Examination

Course Code and Title : MEX3273 - MODELLING OF MECHATRONICS SYSTEMS

Academic Year : 2014/2015

 Date
 : 18th September 2015

 Time
 : 9.30am - 12.30pm

Duration : 3 hours

General instructions

1. Read all instructions carefully before answering the questions.

2. This question paper consists of 8 questions. All questions carry equal marks.

3. Answer any 5 questions only.

4. Laplace transformation table is attached at the end of this question paper.

(Q1)

- a) "Real systems are nonlinear". Under what conditions does a linear model qualify to be studied as a real systems? Explain.
- b) Briefly explain the classifications of models in dynamic systems.
- c) Explain the logical steps of the analytical modelling process for a general physical system.
- d) List advantages and disadvantages of experimental modelling over analytical modelling.

(Q2)

- a) Why are analogies important in modelling of dynamic systems? Explain.
- b) What are A-type and T-type elements? Classify mechanical inertia, mechanical spring, fluid inertia, and fluid capacitor into these two types. Explain a possible conflict that could arise due to this classification.
- c) "Accurate design of the system should consider the entire system as a whole rather than designing the electrical, electronic, and mechanical aspects separately and sequentially". Explain.
- d) Briefly explain the conservation laws and property laws of engineering systems.

(Q3)

- a) Obtain governing equations for the basic rotational mechanical elements.
- b) Figure 1 shows a motor driving a load through a gear-train which consists of two gears coupled together. The moment of inertia and viscous friction of motor and gear 1 are denoted by $I_{\theta 1}$ and $D_{\theta 1}$ and those of gear 2 and load are denoted by $I_{\theta 2}$ and $D_{\theta 2}$.

Figure 1

- i. How many degrees of freedom does the above system have?
- ii. Using first principles derive the governing equation of the system shown above.

(Q4)

- a) State the relationship between the analogies *Force-Current* and *Force-Voltage* of electrical and mechanical systems.
- b) Represent the analogous mechanical system for the electrical system depicted in Figure 4 using the force-current analogy.

(Q5)

- a) "The transfer function approach is extensively used in the analysis and design of dynamic systems". Comment on this statement.
- b) Obtain the transfer function $\frac{E_0}{E_i}$ of the op-amp circuit shown in figure 2.

Figure 2

(Q6)

- a) Obtain expressions for the impedance of basic mechanical and electrical elements.
- b) For the network given on figure 3, find the governing equations using the impedance method.

Figure 3

(Q7)

- a) Define the following terms with regard to state-space representation of dynamic systems.
 - i. State of a system
 - ii. State variables
 - iii. State vector
 - iv. State-space
- b) Explain the methodology adopted in converting a state-space form into a transfer function form.
- c) Represent the electrical network given in Figure 4, in state-space form.

Figure 4

(Q8)

- a) For the block diagram shown in figure 5, determine the transfer function $\frac{C(s)}{R(s)}$ by block diagram simplification.
- b) Develop a signal flow graph for the block diagram in figure 5 and verify answer in part (a) by using the mason's rule.

Figure 5

Page 4 of 6

Mason's Gain formula:

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k} T_{k} \Delta_{k}$$

Where,

T_k	Path gain or transmittance of k^{th} forward path	
Δ	Determinant of graph 1 - (sum of all individual loop gains) + (sum of gain products of all possible combinations of two non-touching loops) - (sum of gain products of all possible combinations of three non-touching loops) +	
	$1 - \sum_{a} L_a + \sum_{b,c} L_b L_c - \sum_{d,e,f} L_d L_e L_f + \cdots$	
$\sum_a L_a$	Sum of all individual loop gains	
$\sum_{b,c}^{a} L_b L_c$	Sum of gain products of all possible combinations of two non-touching loops	
$\sum_{d,e,f} L_d L_e L_f$	Sum of gain products of all possible combinations of three non-touching loops	
Δ_k	Cofactor of the k^{th} forward path determinant of the graph with the loops touching the k^{th} forward path removed, that is, the cofactor Δ_k , is obtained from Δ by removing the loops that touch path P_k	

Laplace transforms:

TIME FUNCTION f(t)	LAPLACE TRANSFORM F(s)
Unit Impulse $\delta(t)$	1
Unit step	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t ⁿ	$\frac{n!}{s^{n+l}}$
$\frac{df(t)}{dt}$	sF(s)-f(0)
$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}\frac{df(0)}{dt} \dots - \frac{d^{n-1}f(0)}{dt^{n-1}}$
e ^{-at}	$\frac{1}{s+a}$
te ^{-at}	$\frac{1}{(s+a)^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cos <i>w</i> t	$\frac{s}{s^2 + \omega^2}$
e ^{-σt} sin <i>ω</i> t	$\frac{\omega}{(s+a)^2+\omega^2}$
e⁻at cos <i>w</i> t	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$

END