The Open University of Sri Lanka
Department of Electrical and Computer Engineering
Diploma in Technology
ECX4238— Electrical Machines
Final Examination-2014/2015
Duration: Three hours

Date: 27th August 2015

Time: 09.30-12.30 hrs

The paper contains eight (8) questions. Answer any (5) questions. All questions carry equal marks.

Question 1

- a. Why it is not possible to obtain speed of a DC shunt motor above normal by armature resistance control?
- b. A belt driven 100 kW DC shunt generator running at 300 rpm on 230 V bus-bar, continues to run as a motor when the belt breaks and taking 10 kW power from supply. The armature and field resistances are $0.03~\Omega$ and $60~\Omega$ respectively. The brush contact drop under each brush equals to 1 V. Determine speed of the machine when it is operating as the motor. State any assumptions you make
- c. A DC motor runs at 900 rpm when it is connected to 460 V supply. Calculate the approximate speed, when the supply of the machine is 200 V. Assume that the new flux to be 0.7 of the flux when it was connected to 460 V [6 Marks]

Question 2

- a. What are the methods used to control the speed of a DC shunt motor above and below its base speed?
 [4 Marks]
- b. A 200 V DC series motor takes 40 A from the supply when it is running at the speed of 700 rpm. Armature and field resistance of the machine are $0.15~\Omega$ and $0.1~\Omega$ respectively. Now, the field winding is shunted by a resistance equivalent to the resistance of the field winding, and the torque is increased by 50%. Determine new speed of the machine and current taken from the supply [16 Marks]

Question 3

- a. Explain briefly why the large three-phase induction motors need special starting arrangements.

 [3 Marks]
- b. A three-phase, 4 pole, star connected, 400 V, 50 Hz squirrel cage induction motor has the following equivalent circuit parameters per phase in Ω . (All parameters are referred to the stator side and indicated with usual notations)

 $R_1 = 0.25$

 $X_1 = 1.4$

 $R_2^1 = 0.50$

 $X_2^1 = 1.0$

 $X_m=40$

Total fixed (core, friction and windage) losses are 1275 W. If the machine operates at a slip of 4%, calculate the following by clearly stating the assumptions make.

i. Rotor speed

[4 Marks]

ii. Stator current

[6 Marks]

iii. Shaft torque

[7 Marks]

Question 4

a. Compare the merits and demerits of Squirrel cage induction motor and Wound rotor induction motor.
 [3 Marks]

b. A three-phase, 50 Hz, 6 pole, 400 V induction motor takes a power input of 35 kW at its full-load speed of 890 rpm. The stator losses are 1 kW and friction and windage losses are 1.5 kW. Calculate

i.	Slip	[4 Marks]
ii.	Rotor copper loss	[4 Marks]
iii.	Shaft power	[4 Marks]
iv.	Shaft torque	[2 Marks]
v.	Motor Efficiency	[3 Marks]

Question 5

- a. Draw an equivalent circuit of a cylindrical rotor synchronous generator and obtain an expression for maximum power output. Assume that the armature resistance of the synchronous generator is neglected.
- b. A three phase, 22 kV, star connected turbo alternator with a synchronous impedance of j1.3 Ω /phase is delivering 230 MW at unity power factor to 22 kV grid.
 - i. With the turbine power remaining constant, the alternator excitation is increased by 30%. Determine machine current and power factor based upon linearity assumption. [8 Marks]
 - ii. At the new excitation, the turbine power is now increased till the machine delivers 275 MW. Calculate the new current and power factor [8 Marks]

Question 6

- a. What type of alternators are used for i) hydro turbines ii) steam turbines as prime movers? Give reasons.

 [4 Marks]
- b. A three phase 1500kVA, star connected, 50 Hz, 2300V alternator has a resistance between each pair of terminals as measured by direct current is 0.16 Ω. Assume that the effective resistance is 1.5 times the ohmic resistance. A field current of 70A produces a short circuit current equal to full-load current of 376A in each line. The same field current produces an emf of 700V on open circuit.
 - i. Determine the synchronous reactance of the machine

[8 Marks]

ii. Determine the full load regulation at 0.8 power factor lagging

[8 Marks]

Question 7

- a. Certain three-phase transformer has been labelled as 41Dy11.Explain what information you can obtain from above labelling? [3 Marks]
- b. Sketch the winding connection and draw phasor diagram to show all voltages and currents of the transformer mentioned in (a) [3 Marks]
- c. Figure Q7 shows the winding connections of a three phase transformer. Draw the phasor diagram to show the EMFs in windings and determine the phase shift between primary and secondary EMFs

[8 Marks]

Figure Q7
Page 2 of 3

d. A three-phase, delta-star connected 11 kV/400 V, 50 Hz transformer takes a line current of 5 A, when secondary load of 0.8 p.f lagging is connected. Determine each coil current and power output of transformer [6 Marks]

Question 8

a. Compare ONAF and OFAN cooling methods of transformer.

[3 Marks]

b. A 100 kVA, 3300/400 V, 50Hz, three-phase transformer is delta connected on the high voltage side and star connected on the low voltage side. The resistance of the HV winding is 4 Ω per phase and that of the LV winding is 0.04 Ω per phase. Calculate the iron losses of the transformer at normal voltage and frequency if its full load efficiency be 95% at 0.85 power factor lagging

[8 Marks]

- c. A 120 kVA, 6000/400 V, Y-Y connected, 50Hz, three-phase transformer has an iron loss of 1800 W. The maximum efficiency occurs at 75 % of the full-load. Find the efficiency of the transformer at
 - i. Full load and 0.8 power factor

[5 Marks]

ii. The maximum efficiency at unity power factor

[4 Marks]