THE OPEN UNIVERSITY OF SRI LANKA Bachelor of Technology (Civil) – Level 4 CEX 4233 – Irrigation Engineering Final Examination – 2014/2015

Date

: 24th August 2015

Time

: 13:30 - 16:30 hrs

Duration

: Three (03) hours

Answer any five (5) questions. All questions carry equal marks.

- 1. The Deduru Oya reservoir, formed by a 2400 m long earthen dam serves the lands in dry and intermediate zones of Kurunegala and Puttalam districts, where the people are frequently suffering from water scarcity.
 - a. Discuss the advantages and disadvantages of constructing an earth dam.
 - b. Enumerate and explain with neat sketches the different ways by which the earthen dams may fail.
 - c. What precautions and remedial measures would you undertake to control seepage through
 - i) the earthen dam body.
 - ii) the dam foundation.
 - d. Rip –rap is a layer of large and durable rock fragments placed on the upstream slope of an earth dam. Explain why rip –rap is placed on the upstream slope of the dam.

2.

- a. Enumerate on different types of canals in an irrigation scheme and their uses.
- b. What are the possible causes of water losses in a canal? What are the methods adopted in reducing such losses?
- c. Capacity of an irrigation canal is the quantity of water that a canal is designed to carry in a unit time. What are the important considerations that must be taken into account in determining the design capacity of a canal?
- d. An existing unlined channel is having the following dimensions:

Width of the bottom

1.8 m

Side slopes

= 1 vertical to 1 horizontal

Depth of flow

= 0.4 m

Bed slope = 0.004 Manning's coefficient = 0.025

- Determine the velocity of flow and check whether it lies in the non silting, non – scouring range.
- ii) Calculate the discharge in the channel.

3.

- a. Write short notes on
 - i) Optimum utilization of irrigation water
 - ii) Crop rotation
 - iii) Consumptive use and its estimation
 - iv) Net irrigation requirement
- b. Monthly water requirement of various crops to be grown in area A is shown in table Q3. A reservoir is proposed to be constructed to command an area equal to 120,000 hectares. The various crops are; paddy, groundnut, maize, Green gram, sugarcane and chillies. The areas under irrigation of these crops are going to be; 20%, 5%, 5%, 10%, 10% and 3% of command respectively. Determine the annual storage required for the reservoir, assuming canal losses as 25% of head discharge, and reservoir evaporation and dead storage losses as 20% of gross capacity.

Table Q3

	Field irrigation requirement in cm (FIR)							
Month (1)	Paddy (2)	Groundnut (3)	Maize (4)	Green gram (5)	Sugarcane (6)	Chillies (7)		
June 1-30	19.3				25.9	_		
July 1-31	6.0				7.6			
Aug. 1-31	7.4				6.8			
Sept. 1-30	7.9				6.0	1.7		
Oct. 1-31	29.9	·	3.4	4.0	34.7	23.5		
Nov. 1-30	20.7	6.3	15.1	8.0	42.3	22.4		
Dec. 1-31		16.2	23.8	20.6	18.0	16.6		
Jan. 1-31		21.6	20.5	22.8	22.0	10.8		
Feb. 1-28		13.4		14.3	25.0			
March 1-31		-			36.5			
April 1-30					40.8			
May 1-31					50.0			

4

- a. List 5 factors that govern the selection of the type of dam for a particular location, and briefly explain any two of them.
- b. Give the types of dams which could be selected for the following sites. Justify your answer with reasons.
 - i) A wide gorge with good foundations.
 - ii) A narrow deep gorge with strong abutments.
 - iii) A gorge with weak foundations but with abundant availability of materials locally.
 - iv) A gorge in hilly terrain with poor access.
- c. Explain in detail the various forces causing instability in a gravity dam.
- d. Most of the dam failures in the world have been due to foundation failure. In what aspects should you investigate for a good design of the foundation of a dam?

5.

- a. You have been asked to measure the discharge of
 - i) A river
 - ii) A small stream
 - iii) A canal

Describe briefly how you would carry out the measurements in each case.

b. The following data (Table Q5) is observed on a stream in a standard current meter test.

Table Q5

Distance (m)	0	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0	6.6
Depth (m)	0	0.30	1.29	2.16	2.55	2.22	1.68	1.41	1.05	0.63	0.42	0
Number of revolutions at 0.2d	0	73	101	140	157	146	135	123	112	95	78	0
Number of revolutions at 0.8d	0	33	62	95	107	50	90	78	67	56	50	0
Time (seconds)	0	60	60	60	60	60	60	60	60	60	60	0

The rating equation of the current meter is V = 0.32N + 0.032 ms⁻¹. Where N is the revolutions/sec. Calculate the discharge of the stream.

6.

a. When a natural drain crosses or intercepts an irrigation canal it becomes necessary to construct 'cross drainage works'. Enumerate the various types of cross drainage works in Sri Lanka.

- b. What are the considerations that you will make in selecting a suitable cross drainage work for a particular location?
- c. What is a canal drop? Why is it necessary to provide drops?
- d. Briefly explain the steps that you follow in diverting water from a river to a canal.

7.

- a. Briefly explain the use and the method of carrying out the following topographical surveys necessary for the investigation of a suitable location for a reservoir.
 - i) Reservoir bed survey
 - ii) Dam axis survey
 - iii) Spill site survey
 - iv) Tail water rating curve survey
- b. The area elevation data of a proposed reservoir is given in table Q7.

Table Q7

10010 Q.			
Elevation (m)	Area (Ha)	Cost of	Present value of
		construction	income
		(Million Rupees)	(Million Rupees)
100	0	0.5	-
110	140	4	5
120	320	5	6.2
130	615	6	8.4
140	960	7	8.5
150	1325	8	8.6

- i) Calculate the reservoir capacity at various dam elevations.
- ii) Find the most economical height of the dam.