

The Open University of Sri Lanka
Faculty of Engineering Technology
The Department of Agricultural and Plantation Engineering
Bachelor of Industrial Studies Honors
Final Examination – 2015/2016
AEZ3238 Mathematics for Agriculture

Date

: 21-11-2016

Time

: 9.30 a.m. – 12.30 p.m.

Duration

: Three (03) hours

General instructions:

• This question paper has eight (08) questions.

• Answer any six (06) questions.

• All questions carry equal marks.

• Write your Index Number clearly on the answer book.

• Write the number of the question distinctly before each answer.

Question 1

a) Factorize the following expressions.

i)
$$9x - 15x^2$$

ii)
$$2p^2q - 12q^2p$$

iii)
$$64a^3 - 27b^3$$

iv)
$$2x^3y - 12x^2y^2 + 18xy^3$$

v)
$$a^2 - 2ab + b^2 - c^2$$

b) Simplify the following.

i)
$$\frac{3x}{3x-2} - \frac{6x}{9x^2-4} - 1 + \frac{2}{4-9x^2}$$

ii)
$$\left(\frac{x+4}{2x-1}\right) \div \left(\frac{x^2-16}{12x^2-3}\right) \times \left(\frac{x^2-5x+4}{(2x+1)}\right)$$

c) Solve
$$K = \frac{1}{2} (mv^2)$$
 for v.

d) Find the quotient and remainder when $(x^2 + 4x + 19)$ is divided by (x + 6).

- a) Solve the following equations.
 - i) $x^2 = 5x 3$

Use completing the square method.

ii) $15x^2 - 4x - 3 = 0$

Use factorize method.

- iii) 2x + y = 2; 5y + 3x + 4 = 0 Use substitution method.
- iv) x-y+z=2;2x + 3y - z = 3;

3x + 2y + 3z = 11

- b) Find the range of the value of k if the equation $x^2 + (k-2)x + 4 = 0$ has real roots.
- c) In the above equation if the value of k = -4, and the roots are given by α and β , find the values of the following:
 - ί) αβ
 - ii) $(\alpha + \beta)$

Question 3

- a) Covert the following angles given in radians to degrees.
 - i) $5\pi/2$
 - ii) $8\pi/3$
 - iii) $7\pi/6$
- b) Convert the following angles given in degrees to radians.
 - i) 24⁰
 - ii) 160⁰
 - iii) 300⁰

c) Prove the following trigonometric relationships.(csc = Cosec)

i)
$$\tan^2 x - \sin^2 x = \tan^2 x \sin^2 x$$

ii)
$$\tan x + \cot x = \sec x \csc x$$

iii)
$$\frac{(\cot x - 1)}{(\cot x + 1)} = \frac{1 - \tan x}{1 + \tan x}$$

iv)
$$\tan x + \frac{(\cos x)}{(1+\sin x)} = \sec x$$

Question 4

a) Evaluate the limits of the following functions.

i)
$$\lim_{x\to -2} \frac{2x^2+7x+6}{x+2}$$

ii)
$$\lim_{x\to 0} \frac{(x+2)^2-4}{2x}$$

iii)
$$\lim_{x\to 1/3} \frac{3x-1}{9x^2-1}$$

iv)
$$\lim_{x\to -2} \frac{x^2 - x - 6}{x^2 + 3x + 2}$$

b) Differentiate following functions.

i)
$$y = \frac{2}{x^3}$$

ii)
$$y = 4x^4 - 3x^3 + 2x^2 - 5$$

iii)
$$y = (2x + 3)(x^2 + 4x + 1)$$

iv)
$$y = (2x^2 + 3)^{10}$$

v)
$$y = \frac{x^2 + 2x + 1}{x^3 + 3x}$$

a) By using the curves of $f(x) = x^2$ and $g(x) = x^2 - 8x + 16$ given below, write your answers to the following questions.

- i) Find the minimum values of the functions f(x) and g(x).
- ii) Do the functions have real roots? If so, what are they?
- iii) About which lines the graphs are symmetrical?
- iv) What are the intersect points of these two graph?
- v) For all real values of x, what is the value range of f(x) and g(x)?
- b) The function $y = x^3 + x^2 5x + 2$ has two turning points.
 - i) What are the coordinates of these turning points?
 - ii) Check for maxima and minima and identify the nature of the turning points.

a) Find the indefinite integral of the following functions.

i)
$$\int (4x^3 + 6x^2 - 5) dx$$

ii)
$$3 \int (x^2 + 3)^2 dx$$

iii)
$$\int \frac{7x+1}{2x^2-3x-2} \ dx$$

iv)
$$\int x \sin 3x \, dx$$

b) Find the finite integral of the following functions.

i)
$$\int_0^2 (3x^2 + 1) dx$$

ii)
$$\int_0^1 (x+3)^2 dx$$

iii)
$$\int_{1}^{2} \left(\frac{2x^2 - 3x + 5}{x^2} \right) dx$$

Question 7

a) A box is pulled with 100N force. Mass of the box is 10kg and surface is frictionless. Find the acceleration of the box. ($\sin 37^{\circ} = 0.6$, $\cos 37^{\circ} = 0.8$)

- b) An object is thrown straight down from the top of a building at a speed of $20 ms^{-1}$. It hits the ground with a speed of $40 ms^{-1}$.
 - i) What is the height of the building?
 - ii) How long was the object in the air?
- c) A car accelerates uniformly 0 to $72kmh^{-1}$ in 11.5 seconds.
 - i) What is the acceleration of the car in ms^{-2}
 - ii) What is the position of the car by the time it reaches the velocity of $72kmh^{-1}$?

a) Applied force vs. position graph of an object is given below. Find the work done by the forces on the object.

- b) A girl (m = 56.2 kg) is traveling at a speed of 12.8 ms^{-1} at the top of a 19.5 m high roller coaster loop.
 - i) Determine girl's kinetic energy at the top of the loop.
 - ii) Determine girl's potential energy at the top of the loop.
 - iii) Assuming negligible losses of energy due to friction and air resistance, determine girl's total mechanical energy at the bottom of the loop (h = 0 m).
 - iv) Determine girl's speed at the bottom of the loop.

