THE OPEN UNIVERSITY OF SRI LANKA DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING BATCHELOR OF TECHNOLOGY-LEVEL 3

FINAL EXAMINATION - 2015/2016

ECX3150 - Electronics I

(Closed Book)

Answer any five questions.

Date 16.11.2016

Time: 09:30-12:30 hrs.

- Q1. (a) Considering the behavior of the P-N junction in reverse and forward biased modes derive the characteristic curve of a diode. (4Marks)
 - (b) Consider the circuit in Figure Q1 where Z is a Zenner diode with a breakdown voltage of 5.7V and a D near-ideal Si diode with a forward voltage drop of 0.7V.

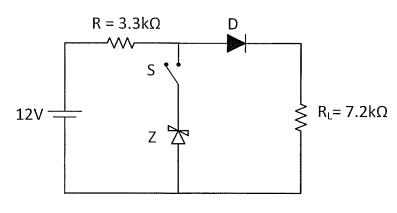
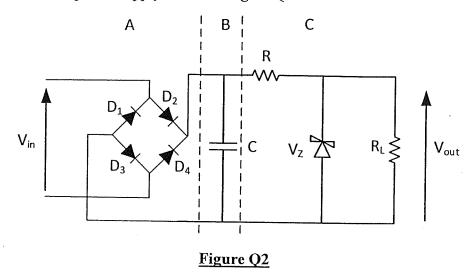



Figure Q1

- i. Let switch (S) be open initially. Calculate the voltage across the load resistance R_L . (4marks)
- ii. Calculate the voltage across load resistance R_L when S is closed. (4marks)
- iii. Calculate the current through R_L when S is closed. (2marks)
- iv. Hence calculate the current flowing through the Zenner diode. (6marks)

Q2. Consider the DC power supply circuit in Figure Q2.

Let $D_1 \sim D_4$ are identical Si diodes with a forward voltage drop of 0.7V in each. $R = 1k\Omega$, $R_L = 10k\Omega$, $C = 10\mu F$. Zenner diode breakdown voltage $V_Z = 5.1V$. V_{in} is a sinusoidal voltage with a peak amplitude of 9V.

- (a) Identify the three distinct sub-circuits A, B and C. (3Marks)
- (b) Assuming that minimum output value of the section B is 6.1V, draw the output waveforms at the outputs of each A, B and C. (6Marks)
- (c) Calculate the minimum and maximum currents flowing through the Zenner diode.

(8Marks)

- (d) Hence calculate the minimum power rating of the Zenner diode. (3Marks)
- Q3. The single stage BJT transistor amplifier circuit shown in Figure Q3 consists of a Si transistor ($V_{be} = 0.7V$) with a current gain, $\beta = 100$.

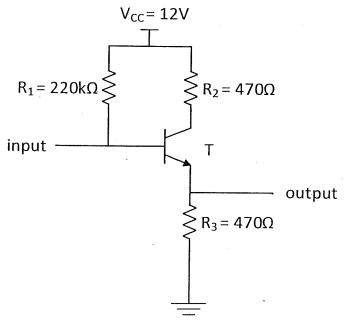
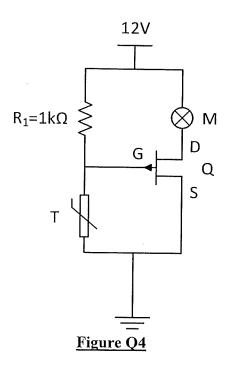



Figure Q3

(a) Write the bias configuration of the circuit shown in Figure Q3.	(2Marks)
(b) Calculate the base, collector and emitter currents of the transistor.	(6Marks)
(c) Hence calculate the V_{CE} voltage.	(4Marks)
(d) Draw the DC load line for the circuit.	(6Marks)
(e) Hence, comment on the stability of the amplifier in Figure Q3.	(2Marks)

Q4. Figure Q4 shows a FET based cooling fan motor (M) driver circuit. T is a thermistor which decreases its resistance when the temperature is increased and vise-versa.

- (a) Using a clear diagram, explain the phenomena of pinch-off in a JFET. (5Marks)
- (b) What is the bias configuration used in this circuit in Figure Q4? (2Marks)
- (c) If the pinch-off voltage of the FET (Q) in Figure Q4 is 3V and $I_{DSS} = 12mA$, calculate the drain source current through the FET for thermistor resistances of
 - i. 100Ω
 - ii. 333.33Ω
 - iii. $1k\Omega$.

(3x3marks)

(d) Hence explain the behavior of the FET (Q) when the temperature changes from 30 to 60 degrees (as a result resistance changes from $1k\Omega$ to 100Ω) (4Marks)

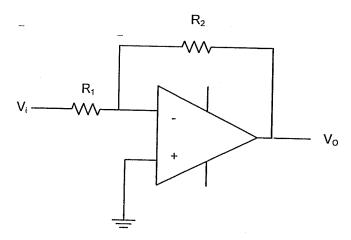


Figure Q5 (a)

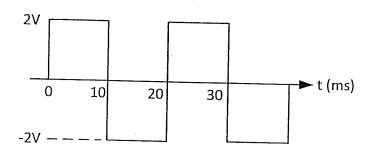


Figure Q5 (b)

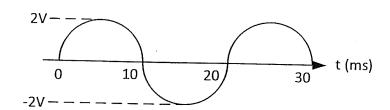


Figure Q5 (c)

(a) List four properties of an ideal operational amplifier.

(4Marks)

- (b) Derive an expression for the $\frac{v_o}{v_i}$ in the ideal operational amplifier based circuit in Figure Q5 (a). (6Marks)
- (c) Let $R_1 = 2.2k\Omega$ and $R_2 = 4.7k\Omega$. Draw the output waveforms with respect to the input signals given in Figures Q5 (b) and Q5 (c). (2x5Marks)

Q6.

- (a) Perform the following conversions.
 - i. 9.75₁₀ to binary
 - ii. 0.2_{10} to binary
- iii. CC.F₁₆ to octal
- iv. -23 to 8 bit 2's complement

(4x2Marks)

(b) Find the addition of the two BCD numbers 10010011.0101 and 00110111.0001.

(4Marks)

(c) Perform the calculation 12-15 in 8 bit 2's complement arithmetic.

(4Marks)

(d) Using binary division, divide 100011₂ by 110₂.

(4Marks)

Q7.

- (a) Using a truth table, prove the Boolean identity $ABC + AB\bar{C} + A\bar{B}\bar{C} + A\bar{B}C = A$ (4Marks)
- (b) Using De Morgan's theorem prove following identities.

i.
$$AB + \overline{B}C = \overline{(\overline{A} + \overline{B})(B + \overline{C})}$$

(3Marks)

ii.
$$(\bar{A} + \bar{C})(B + \bar{C})[A + B(\bar{B} + \bar{C})] = AC + \bar{B}C + \bar{A}(\bar{B} + BC).$$

(4Marks)

- (c) Implement the Boolean function $F = (A + \bar{B})(\bar{C} + D)$ using
 - i. NOT, AND and OR gates
 - ii. NAND gates only
 - iii. NOR gates only.

(3x3Marks)

Q8.

- (a) A three variable Boolean logic expression is given by $E = \prod M(2,4,6)$. Using Karnaugh maps find,
 - i. minimum POS and
 - ii. minimum SOP expressions.

(10Marks)

- (b) Construct Karnaugh maps for the expression $F = ABC + \bar{A}BC + AB\bar{C}$ and find
 - i. minimum SOP and
 - ii. minimum POS

expressions.

(10Marks)