The Open University of Sri Lanka Department of Electrical and Computer Engineering

ECX3210 - Electro-Technique

Final Examination 2015/2016

Closed Book Test

Time: 13.30-16.30

Date: 22nd November 2016

Answer any 5 out of 8 questions provided. All questions carry equal marks. Show all relevant steps of calculation.

- 1) a. What is the resistance range of a resistor displaying colour bands Violet, Green, Black, Gold?
 - b. The potential difference across the terminals of a battery is 8.4 V when there is a current of 1.5 A in the battery from the negative to the positive terminal. When the current is 3.5 A in the reverse direction, the potential difference becomes 9.4 V.
 - i. What is the internal resistance of the battery?
 - ii. What is the emf of the battery?
 - c. An electric teakettle has a multi-position switch and two heating coils. When only coil 1 is switched on, the well-insulated kettle brings a full pot of water to a boil in 1 minute. When only coil 2 is switched on, it requires 2 minutes to boil the same amount of water. Find the time interval required to boil the same amount of water if both coils are switched on
 - iii. in a parallel connection
- and
- iv. in a series connection.
- 2) a. Describe briefly the two Kirchhoff's Laws of electric circuits, indicating the underlying conservation laws.
 - b. In the circuit of fig. Q2 find the magnitude and direction of the current flowing in wire between points **b** and **c**.

- 3) a. Describe Lenz's Law of induction.
 - b. Two small spheres, each of mass 2 g, are suspended by light strings 10 cm in length and a uniform electric field is applied as shown in Fig Q3. The spheres have charges equal to -5×10^{-8} C and $+5\times10^{-8}$ C. Determine the magnitude and direction of the electric field that enables the spheres to be in equilibrium at an angle of $\Theta = 10^{\circ}$ to the vertical.

- c. A proton moving in a circular path perpendicular to a constant magnetic field takes 1 ns to complete one revolution. Determine the magnitude of the magnetic field. Neglect any gravitational effects. [$m_p = 1.67 \times 10^{-27} \text{ kg}$, $+p = 1.6 \times 10^{-19} \text{ C}$]
- a. A capacitor has vacuum in the space between the conductors. If you double the amount of charge on each conductor, what happens to the capacitance?
 - b. An isolated capacitor of unknown capacitance has been charged to a potential difference of 100 V. When the charged capacitor is then connected in parallel to an uncharged 10 μ F capacitor, the voltage across the combination is 30 V. Calculate the unknown capacitance.
 - c. Two capacitors of 9 μ F and 4 μ F are connected in series with each other and with a DC source of 26 V. Then the charged capacitors are disconnected from the source and from each other, and then reconnected to each other with plates of **opposite** sign together. By how much does the energy of the system change?
- a. A student using an ammeter comments that two AC branch currents, of 3 A and 5 A respectively, combine together at a point to give a total current of 6.6 A. She states that this is a violation of Kirchhoff's current law. What is your opinion? Explain.
 - b. For circuit in fig Q5, with L = 100 mH, C = $2.5 \mu F$, and R = 200Ω , it was found that the admittances of capacitor C and the inductor L have the same magnitude at the angular frequency ω_C provided by the sinusoidal source e(t). The current I_{rms} through the resistor was measured as 12 mA.

- i. Calculate the value of ω_{C} .
- ii. Calculate the currents through the other components, taking the current through the resistor as reference.
- iii. State **e(t)** in *E* sin $(\omega t + \phi)$ form.
- iv. Sketch the phasor diagram for the circuit to scale based on your calculations.
- v. What is the power factor of the circuit?

a. What is the characteristic of a (portion of a) circuit at resonance? Give the primary characteristic only.

Figure Q6-i

Figure Q6-ii

b. To investigate series and parallel resonance, you are provided an inductor L = 100 mH, a capacitor C = 10 μ F, a resistor R = 200 Ω , a source of variable frequency E = 17 sin (ω t), and a selection of ideal AC ammeters (A), and voltmeters (V).

First you investigate series resonance by setting-up the circuit in fig Q6-i, and tune the source E to the series resonance angular frequency ω_{SO} . Based on your knowledge of resonance calculate /deduce the following values:

- i. ω_{SO} ii. V_1 reading iii. V_2 reading iv. V_3 reading v. A_S reading
- vi. Draw to scale the phasor diagram for the circuit.

Now you investigate parallel resonance by setting-up the circuit in fig Q6-ii, and tune the source E to the parallel resonance angular frequency ω_{P0} . Based on your knowledge of resonance calculate /deduce the following values:

vii. ω_{PO} viii. A_1 reading ix. A_2 reading x. A_3 reading xii. A_P reading xiii. V_P reading xiii. Draw to scale the phasor diagram for the circuit.

Show your calculations. In deductions state your justifications clearly.

- 7) a. Sketch and explain the principles of operation of a simple AC generator (dynamo).
 - b. How can you transform this (without the help of electronic components/circuits) to a DC generator? Explain.
 - c. What is a simple method of increasing the smoothness of the generated DC output? Describe.
 - d. Go back to simple AC generator. What is the output of a simple half-wave rectifier when it is connected across the output terminals of the simple AC generator?
 - e. Describe the functioning of the bridge rectifier, and compare this to the half-wave rectifier.
- a. Sketch and describe behaviour of diode in a circuit using I-V curve.
 - b. Sketch the design for a diode-clipper circuit that clips the input sinusoidal 12 V maximum at 8V at the positive half. Assume use of ideal diodes.
 - c. Describe 3 types of common diodes.