The Open University of Sri Lanka
Department of Electrical and Computer Engineering
Bachelor of Technology Honors in Engineering – Level 3
ECX 3231 – Electrical Circuits and Measurements
Academic Year 2015/2016

Final Examination

Closed Book

Date: 25 - 11 - 2016

Time: 13:30 – 16:30

This question paper consists of 8 questions. Answer **any five** questions. All questions carry equal marks.

Q1. Consider the circuit given in figure 1.

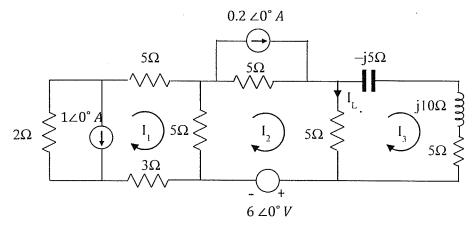


Figure 1

- i. Redraw the circuit after converting all the current sources to equivalent voltage sources. (4 marks)
- ii. Obtain directly, matrix equation to solve the circuit using mesh method. (8 marks)
- iii. Solving matrix equations, find mesh currents I_1 , I_2 and I_3 (5 marks)
- iv. Calculate the current I_L . (3 marks)

Q2. Consider the RLC circuit shown in figure 2.

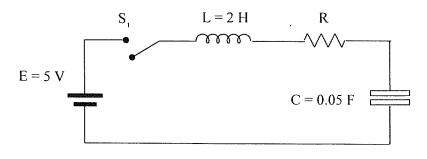
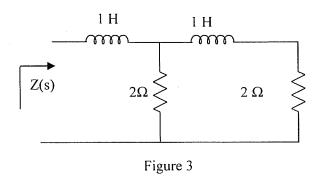
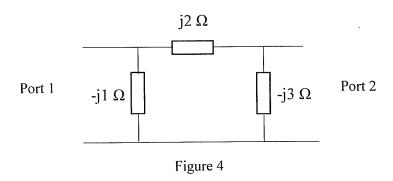



Figure 2

Page 1 of 4

- i. At t = 0 the switch S_1 is closed. Write a differential equation relating voltages across each element of the circuit. Assume the capacitor is initially fully discharged. (4 marks)
- ii. Determine the required resistor value to obtain an under damped response with oscillation frequency of 4 rads⁻¹ (show all the calculations and clearly state any assumptions made)


 (6 marks)
- iii. Using the nearest higher integer value for the resistor obtained in ii, find the roots of the characteristic equation. (4 marks)
- iv. Solve the differential equation solved in i and find an expression for i(t).
- Q3. Consider the RL circuit shown in figure 3.

- i. Derive the driving point impedance function Z(s) for the given circuit.
- (4 marks)

ii. Draw the pole-zero diagram for the given circuit. (4 marks)

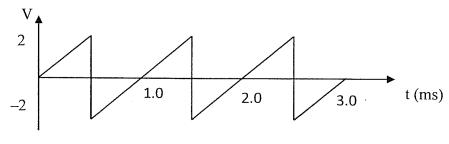
- (4 marks)
- iii. Redesign the circuit using Foster 1st form and Cauer 2nd form of network synthesis. (Clearly indicate the steps of calculation for each type of synthesis) (12 marks)
- Q4. Consider the two port network shown in figure 4.

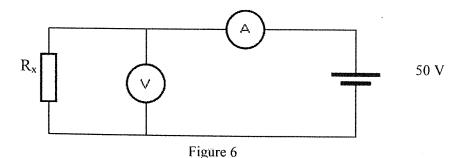
- i. Using standard parameter notation, calculate Y parameters of the given circuit. $(4 \times 2 = 8 \text{ marks})$
- ii. Write the terminal characteristic equation of the circuit in matrix form. (2 marks)

- iii. Using the parameter values you have found in part i, show that, the system is reciprocal. (2 marks)
- iv. Derive a relationship between Y and Z parameters. (4 marks) (4 marks)
- v. Using the relationship derived in ii, determine Z parameters of the circuit.

(4 marks)

Q5. Consider the voltage waveform shown in figure 5.




Figure 5

- i. The waveform is measured using following types of voltmeters separately.
 - a) Average responding voltmeter
 - b) Peak responding voltmeter

What would be the reading of the voltage in each case?

 $(2 \times 3 = 6 \text{ marks})$

- ii. Calculate the actual RMS value of the given waveform using first principles. (8 marks)
- iii. Calculate the percentage errors of readings of i. a) and i. b) when they are compared with the actual RMS value of the waveform. (6 marks)
- Q6 A student has prepared a practical setup as shown in figure 6 to measure an unknown resistor (R_x) .

The readings he has obtained are as follows.

Voltmeter reading

=49.9975 V

Ammeter reading

 $= 10.00 \mu A$

i. Calculate the resistance using meter readings.

(2 marks)

ii. The unknown resistor has been measured using an insulation tester and the value is found to be 11 M Ω , what is the percentage error of value obtained in i?

(4 marks)

- iii. Briefly describe the most probable reason for the error. (5 marks)
- iv. Suggest an alternative to the setup shown in Figure 6 to minimize the error (you need to sketch the setup). Justify your answer by calculating the new error percentage.

 (6 marks)
- v. If a resistor having a value of 270 Ω is given, what will be the most suitable practical setup (setup shown in Figure 6 or the alternative setup in part iv) to measure it with the minimum error? Justify your answer by comparing the errors occurred by each setup. (5 marks)

 (5 marks)

Q7

- i. Define 'Equivalent Series Resistance (ESR)' with reference to capacitors. (2 marks)
- ii. Draw the modified form of De Sauty's bridge to measure the capacitance of a lossy capacitor. You may use the series equivalent resistance model for the lossy capacitor.

(8 marks)

- iii. Obtain expressions for capacitance and series equivalent resistance. (4 marks)
- iv. What are the most suitable components to be selected as variables in your setup? Justify your answer with the help of a sketch of out-of-balance voltage variation in complex domain. (6 marks)
- Q8 Write short notes for each topic given below. You may limit each short note to a maximum of 100 words. Each topic will carry equal marks. $(4 \times 5 = 20 \text{ marks})$
 - i. Function of the 'Guard Terminal' for high resistance measurement.
 - ii. Use of 'loss of charge method' for high resistance measurement.
 - iii. Significance of use of instrument transformers (potential and current transformers) in electrical measurements.
 - iv. Measurement of impedance using AC potentiometer.