

The Open University of Sri Lanka Faculty of Engineering Technology

Study Programme : Bachelor of Technology (Engineering)

Name of the Examination : Final Examination

Course Code and Title : MEX3273 - MODELLING OF MECHATRONICS SYSTEMS

Academic Year : 2015/2016

: 04th December 2016 Date Time : 9.30am - 12.30pm

Duration : 3 hours

General instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of 8 questions. All questions carry equal marks.
- 3. Answer any 5 questions only.
- 4. Laplace transformation table is attached at the end of this question paper.

(Q1)

- a) Distinguish between a dynamic system and a static system. Elaborate by giving suitable examples.
- b) What precaution may be taken in developing and operating mechanical system, in order to reduce system nonlinearities?
- c) Describe the logical steps of the model development process with suitable examples.
- d) Elaborate the properties of a linear system, by taking a suitable example.

(Q2)

- a) List three practical dynamic systems each of which has at least one sensor, one actuator, and a feedback controller.
- b) Briefly explain the conversion laws and property laws of engineering systems.
- c) Discuss the importance of the use of analogies in modeling of dynamic systems.
- d) Why are analogies important in modeling of dynamic systems? Explain.

0013

Use Newton's second law to derive the governing motion of the system is shown in Figure 1 and answer the following;

- a) How many degrees of freedom does this system constitute?
- b) Draw the FBD for the forces involved in the system.
- c) State assumptions you make.

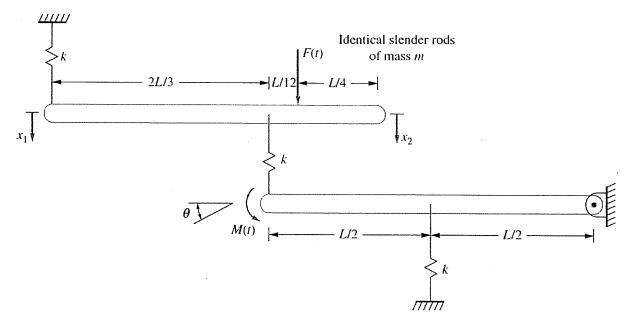


Figure 1

(Q4)

- a) Figure 2 represents the block diagram of an engine-speed control system. The speed is measured by a set of flyweights. Draw a signal flow graph for this system.
- b) Use the signal flow graph obtained in (Q4-a) to represent the actual speed in state space.

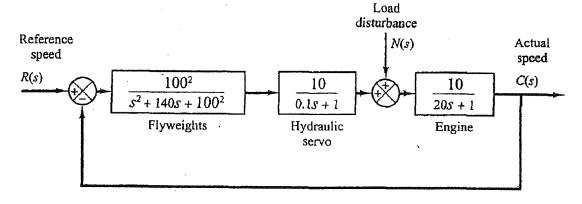
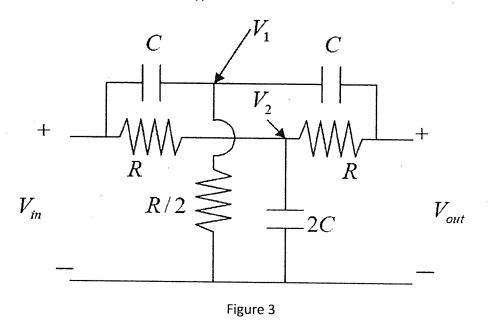


Figure 2

- a) "The applicability of the concept of transfer function is limited to linear, time-invariant, differential equation systems". Comment on this statement.
- b) Consider the Notch circuit is shown in Figure 3. Obtain the governing equations for the system and find the transfer function for $\frac{v_{out(s)}}{v_{in(s)}}$.



(Q6)

- a) Obtain expressions for the impedance of basic mechanical and electrical elements.
- b) Consider three-cart system illustrated in Figure 4. Assume all the surfaces are smooth. Using impedance method to derive governing equations of the motion of the system.

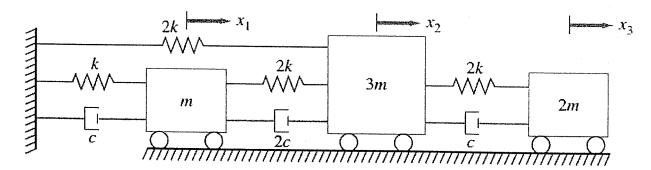


Figure 4

- 001
- a) Define the following terms with regard to state-space representation of dynamic systems.
 - i. State of a system
 - ii. State variables
 - iii. State vector
 - iv. State-space
- b) Explain the methodology adopted in converting a state-space form into a transfer function form.
- c) Find the state space representation for the electrical network shown in Figure 5 if the output vector is $y = [v_{R_2} \quad i_{R_2}]^T$, where T means transpose.

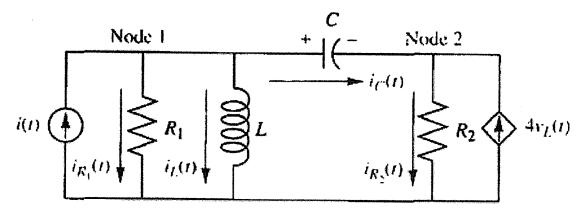


Figure 5

(Q8)

- a) Name the two components of a signal flow graphs.
- b) If a forward path touched all closed loops, what would be the value of Δ_k ?
- c) Using Mason's rule, find the transfer function $\frac{Y(s)}{R(s)}$, for the system represented in Figure 6.

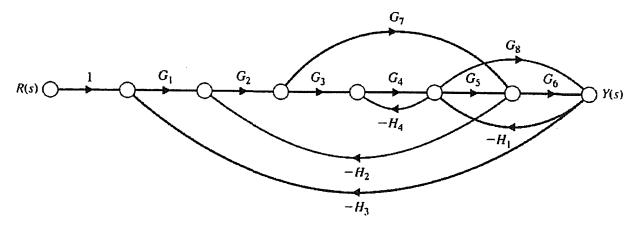


Figure 6

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k} T_{k} \Delta_{k}$$

Where,

T_k	Path gain or transmittance of k^{th} forward path
Δ	Determinant of graph 1 - (sum of all individual loop gains) + (sum of gain products of all possible combinations of two non-touching loops) - (sum of gain products of all possible combinations of three non-touching loops) +
	$1 - \sum_{a} L_a + \sum_{b,c} L_b L_c - \sum_{d,e,f} L_d L_e L_f + \cdots$
$\sum_a L_a$	Sum of all individual loop gains
$\sum_{b,c}^{a} L_b L_c$	Sum of gain products of all possible combinations of two non-touching loops
$\sum_{d,e,f} L_d L_e L_f$	Sum of gain products of all possible combinations of three non-touching loops
Δ_k	Cofactor of the k^{th} forward path determinant of the graph with the loops touching the k^{th} forward path removed, that is, the cofactor Δ_k , is obtained from Δ by removing the loops that touch path P_k

TIME FUNCTION f(t)	LAPLACE TRANSFORM F(s)
Unit Impulse $\delta\!(t)$	1
Unit step	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t ⁿ	$\frac{n!}{s^{n+1}}$
$\frac{df(t)}{dt}$	sF(s)-f(0)
$\frac{d'' f(t)}{dt''}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}\frac{df(0)}{dt} \dots - \frac{d^{n-1}f(0)}{dt^{n-1}}$
e ^{-at}	$\frac{1}{s+a}$
te ^{-at}	$\frac{1}{(s+a)^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cos <i>w</i> t	$\frac{s}{s^2 + \omega^2}$
e ^{-at} sin <i>ω</i> t	$\frac{\omega}{(s+a)^2+\omega^2}$
e ^{-at} cos <i>ω</i> t	$\frac{s+a}{(s+a)^2+\omega^2}$

END