# The Open University of Sri Lanka Faculty of Engineering Technology



Study Programme : Bachelor of Technology Honours in Engineering

Name of the Examination : Final Examination

Course Code and Title : MEX3274 – Electronics, sensors and actuators

Academic Year : 2016/17

Date : 25<sup>th</sup> November 2016

Time : 0930hr-1230hr

#### General instructions

1. Read all instructions carefully before answering the questions.

3 hours

2. This question paper has eight questions. All questions carry equal marks.

3. Answer five questions only, selecting at least two questions each from part A and part B.

### PART A

Duration

### Question 01

- a) What are the common rectification methods available to convert AC to DC? Briefly explain.
- b) A circuit is to give an output voltage of 5 V from an input voltage of 15 V as shown in the figure Q1-b. If  $R_2 = 200\Omega$ , calculate the resistance of  $R_1$ .



Figure Q1-b

c) Determine  $V_X$  by finding  $V_{TH}$  and  $R_{TH}$  to the left of A-B using Thevenin's theorem.



Figure Q1-c

d) Derive the Norton equivalent circuit using the Thevenin's circuit drawn for the part (c)

## Question 02

- a) An alternating voltage signal displayed on oscilloscope screen is shown in figure Q2-a. The signal amplitude control is set to 2 V/ division and time base setting is 5ms/division. Determine;
  - i. Frequency of the signal
  - ii. Peak to peak voltage



Figure Q2-a

- b) A step-down transformer is required to transform 240 V a.c. to 12 V a.c. If the primary coil has 1000 turns, how many turns should the secondary have? How you can identify the secondary coil using a multi-meter?
- c) An average of 120 kW is delivered to a city which is located 100 km away from the power station. The transmission lines have a total resistance of 4  $\Omega$ . Calculate the power loss if the transmission voltage is;
  - i) 230 V
  - ii) 33kV
- d) Determine I<sub>1</sub> and I<sub>2</sub> of the circuit shown in figure Q2-d



## Question 03

- a) Convert (note: clearly show the necessary steps);
  - i. 1001112 to hexa-decimal and decimal
  - ii. 355<sub>10</sub> to hexa-decimal and octal
  - iii.  $3E_{16}$  to binary and octal
  - iv. 67<sub>10</sub> to binary coded decimal(BCD)
- b) What is the main significance of two's complement representation of binary numbers?
- c) Determine sign-and-magnitude (8 bit) binary representation of the -43<sub>10</sub>
- d) Explain how R-2R ladder network is used to convert digital signal to analog.

## Question 04

a) Determine VB, VE, Ic and Vc of the BJT circuit shown in figure Q4-a



Figure Q4-a

b) Determine the gain and output voltage of the operational amplifier shown in figure Q4-b, when  $R1 = 10k\Omega$ ,  $R2=100k\Omega$ , Vin=0.2V.



Figure Q4-b

c) Determine the output voltage of the operational amplifier shown in figure Q4-c, when  $R1=R2=R3=10k\Omega\;,\;RF=20k\Omega\;,\;V1=1V,\;V2=1.5V\;and\;\;V3=2V.$ 



Figure Q4-c

## PART B

## Question 05

- a) Distinguish between active sensors and passive sensors. Elaborate with suitable examples.
- b) Explain the difference between accuracy and precision with respect to sensors with using suitable examples.
- c) What is a stain gauge? Briefly explain the applicability of such sensor in a practical situation.
- d) What are the parameters need to determine the resistance change of a strain gauge. Explain with a suitable example.

### **Question 06**

- a) Discuss the advantages and disadvantages of a potentiometer and a linear variable differential transformer (LVDT) with respects to a displacement measurement application.
- b) Figure Q6-b illustrates a cutaway view of an encoder.



Figure Q6-b

- i. Identify the type of the encoder.
- ii. State another type of optical encoder and mention the major differences compared to this encoder.
- c) Discuss the differences between inductive, capacitive and optical proximity sensors.

#### Question 07

- a) Discuss the differences between 'Permanent Magnet' and 'Variable Reluctance' stepper motors.
- b) What are the three step modes which use to operate the stepper motor?
- c) Briefly explain following dc motor types which are categorized according to the field windings.
  - i. Shunt connected
  - ii. Series connected
  - iii. Compound connected
- d) A three-phase, four poles induction motor is connected to AC source. The frequency of the power source is 40 Hz.

Determine;

- i. the synchronous speed, and
- ii. the speed of the rotor when the slip is 5%

### Question 08

- a) Discuss the advantages and disadvantages of pneumatic systems.
- b) Draw symbols of following pneumatic components.
  - i. 3/2 way directional control valve
  - ii. 5/2 way directional control valve
  - iii. Air service unit
- c) Design a simple pneumatic circuit to operate a single acting cylinder.

- END -

Page 5 of 5