The Open University of Sri Lanka

B. Sc. Degree program - Level 04

Final Examination 2007

CSU 2178: Digital Computer Fundamentals

Duration: Two and half hours $(2^{1}/2)$

Date: 20.06.2007

Time: 1.30 pm- 4.00 pm

Answer **FOUR** Questions ONLY.

Q1.

- a. Briefly describe the following
 - i. Master control block
 - ii. Direct memory access
 - iii. Magnetic tapes
- b. Discuss the advantages and disadvantages of using cache memory.
- c. Using D type flip -flop and suitable logic gates, show how to construct a RAM cell with read write and select facilities.
- d. Create four-word by eight bit RAM by using two four-word by four-bit RAMs.

Q2.

- a. Following table shows truth table of the BCD-to-7 Segment decoder.
 - i. Complete the following truth table.

	value			7-segment display						
A	В	C	a	b	С	d	е	f	g	
0	0	0	1	1	1	1	1	1	0	
0	0	1	1	0	0	0	0	1	0	
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0		1						
1	1	1								

ii. Design a circuit for any three values of BCD-to-7 Segment decoder.

- b. International Cricket Council (ICC) wants to develop special type of score board to display scores in the forthcoming World Cup cricket matches. A batsman can score 0 7 for a single ball. Assume that you have seven segments Display, BCD to 7-segment decoder and seven switches.
 - i. Create a truth table for a circuit diagram to implement this.
 - ii. Design the circuit diagram.

It will clear if the block diagram includes the circuit to be designed and the seven switches.

Q3.

a. Using truth tables show that

i.
$$A+B+C = (A+B) + C$$

ii.
$$A + \overline{A} = 1$$

iii.
$$A.1 = A$$

iv.
$$\overline{A} \cdot \overline{B} = \overline{(A+B)}$$

b. Using Boolean algebra and show that

i.
$$\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{C}.\overline{A}.D + \overline{C}.\overline{A}.B = \overline{A}.\overline{C}$$

ii. A.B.C.D +
$$\overline{C}$$
.D.B + \overline{A} .B.D = B.D

c. A Nuclear power controlling system contains four sensors to monitor temperature (A), pressure (B), Density (C) and Boron plates (D). Each A,B,C and D values represent high as '1' and low as '0'. Function of the controlling system as follows.

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{C} \cdot D + A \cdot B \cdot C \cdot D + \overline{A} \cdot B$$

- i. Using Boolean algebra and K-Map show that, $F = \overline{A} \cdot \overline{C} + B \cdot D + \overline{C} \cdot D + \overline{A} \cdot B$.
- ii. Implement above circuit using basic gates.

- a. Briefly describe the following
 - i. Radix Number System
 - ii. The EBCDIC character set
 - iii. Unicode character set
- b. Convert following binary numbers into octal and hexadecimal
 - i. 101011001010₂
 - ii. 1000100.011₂
- c. Use Two's complement addition to perform the following calculation
 - i. $12_{10} + 33_{10}$
 - ii. 20₁₀ 27₁₀
- d. Design a truth table for full adder.
- e. Implement Full Adder using basic logic gates.

Q5.

- a. Briefly describe the following using suitable truth tables and Circuit diagrams
 - i. S-R Flip-flop
 - ii. J-K Flip-flop
- b. Develop a four-bit register using J-K flip flops
- c. What are the differences between synchronous and asynchronous counters
- d. Draw 4 bit up counter and a down counter.
- e. Explain the counter circuit given bellow.

Q6.

- a. Briefly describe the following using suitable truth tables and circuit diagrams
 i. 4-to-1 Multiplexer
 - ii. Decoders
- b. Design 8-to-1 Multiplexer using two 4-to-1 Multiplexers
- c. Implement AND gate, an OR gate and a XOR gate using NAND gates.
- d. Find the minimal logic expression for the following truth table using the K-MAP method. Design a circuit to implement this truth table using 3-input NAND gates only.

A	В	C	D	F
A 0	0	0	0	1
0	0	0	1	1 1 0
0		1	0	0
0	0	1		0
0	1	0	0	0
0	1_	0	1	1 X 0 1 0
0	1	1	0	X
0	1	0 0	1	0
1	0	0	0	1
1	0		1	0
$\frac{1}{1}$	0.	1	0	1
1	0	0	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

*** All right reserved ***