THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering

Final Examination (2016/2017) MPZ3132: Engineering Mathematics IB

Date: 13th November 2017 (Monday) Time: 9:30 am - 12:30 pm

Instruction:

- Answer only five questions.
- Number of pages in the paper -06.
- All symbols are in standard notation and state any assumption that you made.

Important integrals

- $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx b \cos bx)$ $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$ $\int f(x) e^{ax} dx = \frac{1}{a} f(x) e^{ax} \frac{1}{a^2} f^1(x) e^{ax} + \frac{1}{a^3} f^2(x) e^{ax} \dots$ [Sign alternate $(+ + + \dots)$]
 $\int f(x) \cos ax dx = \frac{1}{a} f(x) \sin ax + \frac{1}{a^2} f^1(x) \cos ax \frac{1}{a^3} f^2(x) \sin ax \dots$ [Sign alternate in

$$pairs \quad --++--++--\cdots)]$$
•
$$\int f(x)sinax \, dx = -\frac{1}{a}f(x)cosax + \frac{1}{a^2}f^1(x)sinax + \frac{1}{a^3}f^2(x)cosax - \cdots \quad [Sign alternate in pairs after the first term (++--++--++--\cdots)]$$

 $\int \sec ax \, dx = \frac{1}{a} \ln|\sec ax + \tan ax|$

Q1.

- I. Write down the Fourier series expansion for the function f(x) which satisfies the Dirichlet's conditions. [20%]
- II. Expand f(x) = x, in a half range 0 < x < 2 as a: [50%]
 - a) Sin series,
 - b) Cosine series.
 - c) Applying the Parseval's identity formula to the Fourier series of part (II) (b), deduce that $\sum_{i=0}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.
- III. Find the Fourier series representation of the function with period 4, defined by $f(x) = \begin{cases} -1, & -2 \le x \le 0, \\ 2, & 0 < x \le 2. \end{cases}$ [30%]

Q2.

I.

- a) Define the Taylor series of f(x) about x = a. [05%]
- b) Find the Taylor series of the following functions at the each of the following given value of a:

$$f(x) = 2x - 3x^2$$
 at $a = -2$, and

$$g(x) = e^{-2x}$$
 at $a = \frac{1}{2}$. [25%]

Π.

- a) Find the Taylor series of $h(x) = \frac{1}{1+x}$ about x = 0. Hence, find the Taylor series of $(1-x)^{-1}$ and $(1+x^2)^{-1}$ about x = 0.
- b) Using the above part (a), find the Taylor series for $tan^{-1}x$ about x = 0. [10%]
- c) Find the 4th order Taylor polynomial for the following function about x = 0.

$$p(x) = \frac{x+7}{x^2 - x - 6}$$
 [35%]

(Hint: First find the Partial fraction decomposition of the given function, and use the Tylor series expansion)

Q3

$$(D^3 + 3D^2 + 3D + 1)y = e^{-x}$$

[25%]

- II. Using a suitable trial function:
 - a) Find a particular integral for the following differential equation:

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = \sin 2x.$$

b) Find the general solution of the above differential equation

[35%]

III. Prove that

$$\frac{1}{D+\alpha}f(x) = e^{-\alpha x}\frac{1}{D} e^{\alpha x}f(x).$$

Find a particular integral of the following differential equation:

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 5\cos 3x. \text{ Hence, find the general solution.}$$
 [40%]

Q4.

I. Define the "Laplace transformation" of
$$F(t)$$
.

[05%]

II. Find the "Laplace transformation" of each of the following function:

[45%]

- a) $3t^2 4e^t + 5\sin 2t 6\cos 3t$,
- b) te^t .

c)
$$(t^2+4)e^{2t}-e^{-t}\cos t$$
.

III. Find the inverse "Laplace transformation" of each of the following:

[20%]

a)
$$\frac{s+1}{s^2-16}$$

b)
$$\frac{1}{(s+1)(s^2+1)}$$
.

IV. Using the "Laplace transformation", solve the following differential equation:

$$y' + y = 5 \sin x$$
, $y(0) = 3$

[30%]

Q5.

- I. Define the Poisson distribution, and obtain its expectation and variance. [25%]
- II. The number of calls coming per minute into a hotel reservation center is Poisson random variable with mean 3.
 - a) Find the probability that no calls come in a given 1 minute period.
 - b) Find the probability that at least 3 calls will arrive in a given 1 minute period. [25%]
- III. Suppose that we are told that the heights of adult males in a particular region of the world are normally distributed with mean of 70 inches and standard deviation of 2 inches. [50%]
 - a) Approximately what proportion of adult males are taller than 73 inches?
 - b) What proportion of adult males are between 72 and 73 inches?
 - c) What height corresponds to the point where 20% of all adult males are greater than this height?
 - d) What height corresponds to the point where 20% of all males are less than this height?

Q6.

I.

- a) Shade the region corresponding to $|Z + i| \ge |Z 2|$ in the Argand plane. [20%]
 - b) Sketch the region in the Argand diagram define by

$$6 \le Re[(2-3i)Z] < 12$$
 and $Re Z. Im Z \ge 0$. [20%]

c) Express $\log(1-i)$ in the form of x+iy, where x and y are real numbers. [15%]

II.

- a) Find the unit tangent vector and unit normal vector at t = 2 on the curve $x = t^2 4t$, y = 4t 3, $Z = 2t^2 6t$, where t is a variable. [30%]
- b) A particle M moves with velocity $2\underline{i} 3\underline{j}$ from point (4, 5). At the same instant a particle N, moving in the same plane with velocity $4\underline{i} + \underline{j}$, passes through a point (2, -1). Determine whether the particle M and N are collide or not. [15%]

Q7.

- I. Find the moment of inertia of the following bodies about the given axis.
 - a) A uniform rod AB of mass M_1 and length 2a, the axis perpendicular to the rod passing through the midpoint of the rod. [15%]
 - b) Three uniform rod each of length *a* and mass *m* are rigidly jointed at their ends to form a triangular framework. Find the moment of inertia of the framework about an axis passing through the midpoints of two of its sides.

[30%]

II.

- a) A uniform circular disc of mass m and radius a. Find the moments of inertia each of the following case: [25%]
 - (α). about the axis perpendicular to the plane of the disc passing through the center,
 - (β) . about the axis passing through the diameter,
 - (γ) . about the axis passing through the point in circumference of the disc parallel to the diameter.
- b) Find the moment of inertia of a solid circular cylinder of radius a, length h and mass M about a diameter of an end face. [30%]

Q8.

I. A uniform rectangular lamina PQRS is immersed vertically in a homogeneous liquid such that PQ and RS are horizontal. The distance to PQ and RS from the surface of the liquid are a and b respectively. Prove that the center of pressure of the lamina is at the distance

$$\frac{2}{3} \left(\frac{a^2 + ab + b^2}{a + b} \right)$$
 from the free liquid surface. [40%]

II. A semi circular lamina of radius a and center O is immersed in a homogenous liquid with its plane vertical and the straight edge on the surface. Show that the center of the lamina is at depth $\frac{3\pi a}{16}$ from O. [60%]