

The Open University of Sri Lanka

B.Sc. Degree Programme: Level 05

Final Examination-2007

CSU 3275/PMU 3293/PME 5295 - Automata Theory - Paper I

Duration: Two and Half Hours.

Date:18.06.2007

10.00 am -12.30 pm

Answer Four Questions Only.

Let L be the language over the alphabet ε = {0,1} of all stings that contain at least one occurrence of either 10001 or 11111.
(hint: Strings 10011111 & 0010001 belong to L, strings 111 & 111001 do not)

- i) Define L(M) for the above machine M.
- ii) Draw a DFA for L.
- iii) Construct its transition table.
- 2. A Mealy machine can be implemented using circuitry.
 - i) a) Explain the role of α , σ and μ using a simple diagram.
 - b) Discuss the implementation procedure.
 - ii) Given below is the transition table of a Mealy machine.

		State Transition		Outputs	
	I1	I2	I1	I2	
S1	S2	S1	P1	P2	
S2	S1	S2	P1	P2	
S3	S3	S3	P2	P1	

- a) Implement the machine given by the above transition table.
- b) Is the above implementation true? Justify your answer.
- c) Determine the morphism between the two machines.

3.

- i) Suppose M1,M2,M3 are Mealy machines and that ϕ_1 , ϕ_2 are homomorphisms such that $\phi_1: M1 \to M2$ and $\phi_2: M2 \to M3$. Prove that $\phi_1.\phi_2: M1 \to M3$ is a homomorphism, where $\phi_1.\phi_2 = (\alpha, \sigma, \theta)$ and $\alpha = \alpha 1.\alpha 2$, $\sigma = \sigma 1.\sigma 2$, $\theta = \theta 1.\theta 2$.
- ii) What do you mean by "two Mealy machines are behaviorally equivalent"?
- iii) How do two behaviorally equivalent machines become weaken homomorphism?
- iv) If the α mapping of the machines in part iii) is bijective, are those two machines Identity isomorphisms?
- 4. i) Give the definition of state and output transitions for a Mealy machine.
 - ii) Suppose a Mealy machine is defined with the usual notation. Prove for $\forall s \in S^*$, $i \in I^*$ and, $a \in I^*$,

a)
$$\delta^*(s,ai) = \delta^*(\delta^*(s,a),i)$$

b)
$$\beta^*(s,ai) = \beta^*(\beta^*(s,a),i)$$

iii) Construct a DFA over $L = \{0, 1\}$ which will accept all the words where the number of 1's is divisible by three(3).

5.

6.

- i) What do you mean by finite automata?
- ii) What are the special characteristics of a Non Deterministic Finite Automaton?
- iii) Describe the difference between NDFA and DFA.
- (iv) Construct a DFA over the alphabet {a, b} which accepts the language L={b^mabⁿ: where m and n are positive }.
- i) A finite state recognizer is used to recognize the number sequence 7658 in a telephone number (for example, the number 0118876583). Also, the digit 7 should not be repeated consecutively.
- a) Design the above DFA.
- b) Show that the machine you designed accepts the sequence 0118876583.
-) Modify the machine to accept sequences with two consecutive 7's.
- i) Describe the set of strings recognized by the finite state automaton given below.

-All Rights Reserved-