

he Open University of Sri Lanka

Sc. Degree Programme: Level - 05

nal Examination - 2007

SU 3275/PMU3293/PME5293 - Automata Theory -Paper II

uration: Two and Half Hours.

ate: 18.06.2007

1.30 pm - 4.00 pm

nswer Four Questions Only.

- a) State the necessary condition for the non-trivial parallel decomposition.
 - b) What do you mean by the term 'non trivial' in the above part a)?
 - c) "Trivial partitions cannot be used for decomposition". Is this statement correct? Justify your answer.
- ii) Draw a DFA that acts as a parity checker. [Hint: parity checker's role is to add one (1) to the odd stream to make it even.]
- i) Define the SP property of a partition.
- ii) Given below is a transition table of a Mealy machine M.

		State Transition				Output Transition				
	1	2	3	4	5	1	2	3	4	5
a	a	c	a	e	b	1	0	1	0	0
b	C	С	a	е	d	1	0	1	0_	0
c	b	С	a	е	b	1	0	0	1	0
d	b	a	c	a	b	1	0	0	1_	1
e	c	е	a	е	b	0	1	1	0	1

- a) Find the SP Partitions of M.
- b) Hence, decompose M parallely.
- c) If you are to decompose M serially what are the additional features you need to know?
- 3. i) Prove for any three Mealy machines M1, M2 and M3 where $k1: O_1 \rightarrow I_2$ $k2: O_2 \rightarrow I_3$ are defined. Show that the following are true.
 - a) $M1 \oplus_{k1} (M2 \oplus_{k2} M3) \leq (M1 \oplus_{k1} M2) \oplus_{k2} M3$
 - b) $M1 \parallel (M2 \parallel M3) \le (M1 \parallel M2) \parallel M3$
 - ii) Suppose M1 and M2 are two Mealy machines.
 - a) Show that $(M1 || M2) \approx (M2 || M1)$.
 - b) Is $(M1 \oplus_{k_1}M2) \approx (M2 \oplus_{k_2}M1)$, where k1: $O_1 \rightarrow I_2$ and k2: $O_2 \rightarrow I_1$? Justify your answer.
- 4. i) Consider the recursive definition of the language L given below.

 L consists of all stings over {0,1} obtained from the basis step by a finite number of applications of the recursive step.

Basis: The empty string ε in L. Recursive: If $x \in L$ then 1x0 is in L.

Prove, by induction, that $L = \{1^i \ 0^j | i \ge j \ge 0\}$.

- ii) a) Construct a DFA that accepts strings over the alphabet {0,1} that have at least one 1 and an even number of 0s after the last 1.
 - b) A DFA has to be constructed for accepting all the words that have $(10101)^n$ 01 as a string, where n is a positive integer. How would you do this construction if the input alphabet is $\{0,1\}$?

- i) Compare the differences of states, inputs, outputs and state/output transition of two mealy machines in parallel and serial composition.
- ii) The following is a transition table of the Mealy machines M1 and M2.

M1

	1	2	1	2
S1	S2	S3	Ъ	a
S2	S1	S3	b	a
S3	S2	S4	a	b
S4	S1	S4	a	b

M2

	0	1	0	1
00	00	10	0	0
01	00	10	1	1
10	01	11	0	0
11	01	11	1	1

- a) If M is to be serially composite with itself, what are the states of the composite machine?
- b) Give the state and output transition tables of the composite machine.
- 5. i) Find all the upper and lower bounds of the SP partitions given below.

$$\pi_1 = \{\{1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}\}\}$$

$$\pi_2 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5, 6\}\}$$

$$\pi_3 = \{\{1, 2\}, \{3\}, \{4\}, \{5, 6\}\}$$

$$\pi_4 = \{\{1, 4\}, \{2, 3, 5, 6\}\}$$

ii) Draw the lattice for the above partitions.

-All rights Reserved-