The Open University of Sri Lanka B.Sc Degree programme Electro magnetic Theory and Special Relativity Final Examination 2006/2007 AMU3185/AME5185

Duration: Two and half hours.

Date: 02.06.2007

Time: 01.00 p.m. - 04.30 p.m.

Answer FOUR Questions only.

01. Three infinitely long parallel straight wires carrying charges q, $-\alpha q$, q per unit length, where $\alpha \ge 2$ cut a perpendicular plane OXY at the points A, O and B whose rectangular Cartesian co-ordinates are (-a, 0), (0, 0) and (a, 0) respectively.

Show that $\theta_1 - \alpha\theta + \theta_2 = \beta$ (constant)

where $\theta_1 = P\hat{A}O$, $\theta = P\hat{O}B$, $\theta_2 = \pi - P\hat{B}A$, P being any point on a line of force in the OXY - plane.

Also, show that the equation of the force in plane polar co-ordinates (r, θ) , takes the form $r^2 \sin[\beta + (\alpha - 2)\theta] = a^2 \sin(\beta + \alpha\theta)$, where $P \equiv (r, \theta)$.

- 02. (i) Explain briefly the following terms.
 - (a) Electric potential
 - (b) Potential difference
 - (c) Equi-potential surface
 - (ii) Show that the potential V_r at a point distance r from a point charge Q is given by $V_r = \frac{1}{4\pi\varepsilon} \frac{Q}{r}.$
 - (iii) A charge 2q is uniformly distributed inside an insulating material in the form of a sphere of radius r.

Show that the potential at a distance $\frac{r}{2}$ from the centre is $\frac{11q}{16\pi\varepsilon_0 r}$.

- 03. (i) State the Kirchoff's Laws for steady currents in linear conductors.
 - (ii) A cable AB of length l of uniform wire develops a leak at a certain point P through which current leaks to earth. To locate the fault two observations are made. The resistance between A and the earth through the cable when B is earthed is observed to be equal to that of a length a of the wire, and that between B and the earth when A is earthed, to be that of a length b.

Show that the point P intersects AB in ratio $\left(\frac{a(l-b)}{b(l-a)}\right)^{\frac{1}{2}}$, and find the resistance of the leak as a measure of the length of the wire.

04.(i) Define the following terms,

(a) Electric field

(b) Flux density

(c) Electric force

- (d) Zero potential.
- (ii) A thin rod of finite length 21 carries a charge spread uniformly along it such that its linear charge density is λ ,
 - (a) Calculate the electric field \underline{E} at a point P a distance y from the rod.
 - (b) Using part (a), obtain the field at a point distance y from a charged infinity rod.
- **05.** (i) State the Biot –Savart Law.
 - (ii) Compute the magnetic field B at the centre of a square loop of 10 turns carrying steady current of 10 amperes, The loop is placed in air and its sides are 1 meter each. Assume, that the conductors are thin.
 - (iii) Derive an expression for the magnetic field at the centre of a circular current carrying loop.
- **06.** A coil of 800 turns is wound on a wooden form and a current of 5 A through the coil produces a magnetic flux of 200 μwb .

Calculate

- (i) The inductance of the coil.
- (ii) The average value of the emf introduced in the coil when the current is reversed in 0.2s.