Multiple choice questions (2 marks x15 = 30 marks)

Instructions -

Choose the most correct answer to each question and mark a cross over the appropriate cage on the answer sheet.

Use a pen (not a pencil) to mark your answers.

Each correct answer will carry 2 marks.1/3 rd of a mark will be deducted for each incorrect answ Questions with more than one answer will not be counted for grading.

Questions 1 and 2 are based on the following compound.

1. The parent hydrocarbon chain along with the main functional group of this compound is na according to the IUPAC system as

- 4-octyn-2-ol (1)
- 4-octyn-2-one (2)
- 4-octyne

- 3-octynol (4)
- None of the above (5)

2. The substituents present in the above compound with the carbon number are

- 6-bromo-2- hydroxyl-3-methyl (1)
- (2) 6-bromo-3- methyl-7-oxo
- 3-bromo-7- hydroxy-6- methyl (3)
- (4) 3- bromo-6 methyl-2-oxo
- 3-bromo-7- hydroxy-6- methyl- 4- yne.

3. Racemic mixture is best explained as:

- (1) an equimolar mixture of two isomers.
- (2) a mixture of enantiomers.
- (3) a mixture of two diasteroisomers.
- (4) an equimolar mixture of enantiomers.
- (5) an equimolar mixture of two diastereoisomers.

4. Which of the following is a correctly balanced oxidation/reduction reaction?

(1)
$$Fe^{2+} + Au^{3+} \le Fe^{3+} + Au$$

(2)
$$2 \operatorname{Fe}^{2+} + \operatorname{Au}^{3+} \iff 2 \operatorname{Fe}^{3+} + \operatorname{Au}$$

(3) $\operatorname{Fe}^{2+} + 3 \operatorname{Au}^{3+} \iff \operatorname{Fe}^{3+} + 3 \operatorname{Au}$

(3)
$$Fe^{2+} + 3 Au^{3+} \le Fe^{3+} + 3 Au$$

(4)
$$3 \text{ Fe}^{2+} + \text{Au}^{3+} \iff 3 \text{ Fe}^{3+} + \text{Au}$$

(5) The correct response is not given.

5. Consider the statements (a) to (d) regarding the structures A,B and C.

- (a) The most stable structure is A
- (b) The most unstable structure is C
- (c) A and B are conformational isomers
- (d) A and C are configurational isomers

Correct statements are:

- (2) (a and (c) (3) (b) and (c) (4) (b) and (d) (5) (a) and (d) (1) (a) and (b)
- 6. When a copper wire placed in a solution of silver nitrate (AgNO₃), over a period of time, a spontant reaction takes place in which the solution turned blue and silvery needles formed on the copper wi Which of the following statements must be true about this process?
 - (1) $\Delta G > 0$ and $E_{cell} < 0$
 - (2) $\Delta G = 0$ and $E_{cell} > 0$
 - (3) $\Delta G < 0$ and $E_{cell} = 0$
 - (4) $\Lambda G = 0$ and $E_{cell} = 0$
 - (5) $\Delta G < 0$ and $E_{cell} > 0$
- 7. Which of the following statements about the standard hydrogen electrode is true?

(1) Hydrogen gas is bubbled through the electrode at a pressure of 2.0 atm.

(2) The electrode contains a copper wire that serves as a chemically inert surface for oxidationreduction reactions to occur.

(3) The electrode contains a platinum wire that serves as a chemically inert surface for oxidation reduction reactions to occur.

(4) The standard hydrogen electrode is assigned a half-cell potential of 1.0 V.

(5) None of the above statements are true.

8. Consider the following standard reduction potentials,

$$Ni^{2+}(aq) + 2e^- \le Ni(s) - 0.23$$

 $Fe^{2+}(aq) + 2e^- \le Fe(s) - 0.41$

$$\text{Co}^{2+}(\text{aq}) + 2\text{e}^{-} <==> \text{Co}(\text{s}) - 0.28$$

$$Co^{2+}(aq) + 2e^{-} <==> Co(s) - 0.28$$

 $Cr^{3+}(aq) + 3e^{-} <==> Cr(s) - 0.74$

 $Mn^{2+}(aq) + 2e^{-} < = > Mn(s) - 1.03$

Which of the following metals could be used successfully to galvanize steel?

- (1) Ni only
- (2) Ni and Co
- (3) Fe only
- (4) Mn only
- (5) Mn and Cr

9. Consider the titration curve shown below.

The titration curve represents the titration of:

- (1). a strong acid (flask) with a strong base (burette).
- (2). a weak acid (flask) with a strong base (burette).
- (3). a strong base (flask) with a strong acid (burette).
- (4). a weak base (flask) with a strong acid (burette).
- (5). None of these.
- 10. Which of the following statements best describes what will happen when magnesium metal is a to an aqueous solution containing 1.0 mol dm⁻³ ferric ion (Fe³⁺) at 25°C?

half reaction	$\mathbf{E}^{\mathbf{o}},\mathbf{V}$
$Mg^{2+}(aq) + 2e^{-} -> Mg(s)$	- 2.375
$Fe^{3+}(aq) + 3e^{-} -> Fe(s)$	- 0.036

- (1). Mg(s) will be oxidized; Fe³⁺(aq) will be reduced; the standard cell potential will be 2.339 V
- (2). Mg(s) will be oxidized; Fe³⁺(aq) will be reduced; the standard cell potential will be 2.339
- (3). Fe³⁺(aq) will be oxidized; Mg(s) will be reduced; the standard cell potential will be 2.339
- (4). Fe³⁺(aq) will be oxidized; Mg(s) will be reduced; the standard cell potential will be 2.339 V
- (5). There is not enough information given to answer the question.
- 11. Salts of Cu⁺ disproportionate in water to form Cu²⁺ salts and Cu metal,

$$2 \text{ Cu}^+ (\text{aq}) --> \text{Cu}^{2+} (\text{aq}) + \text{Cu} (\text{s})$$

Which species is oxidized and which species is reduced in this reaction, respectively?

- (1) Cu⁺ (aq) and Cu⁺ (aq). (2) Cu⁺ (aq) and Cu²⁺ (aq). (3) Cu⁺ (aq) and Cu (s)
- (4) Cu²⁺ (aq) and Cu (s). (5) This is not a reduction-oxidation reaction.

12. Which of the following formulae represent a pair of isomers

- (1) a and b
- (2) a and c
- (3) a and d
- (4) b and d
- (5) b and c
- 13. What are the oxidation states of the Na, Cr and O atoms, respectively, in sodium dichromate, Na₂Cr₂O₇?
 - (1) +2, +2, -2 (2) +1, +3, -2 (3) +2, +6, +2 (4) +1, +6, -2 (5) -1, +3, -1

14. The IUPAC name of the compound,

- (1) 2-methyl-4-ethyl-pentene
- (2) 2,4-dimethyl-1-hexene
- (3) 2,5-dimethyl-5-hexene
- (4) 4-ethyl-2-methyl-1-pentene
- (5) none of the above
- 15. Which of the following statements about strong acids is true?
 - (1) The percentage dissociation of a strong acid in water is assumed to be 100%.
 - (2) Strong acids have large acid-dissociation constants (Ka).
 - (3) Strong acids react better with strong bases than do weak acids.
 - (4) (1) and (2) are true.
 - (5) (1), (2) and (3) are true.